• Title/Summary/Keyword: Robot-automation

Search Result 629, Processing Time 0.033 seconds

Trajectory Tracking Control of a Real Redundant Manipulator of the SCARA Type

  • Urrea, Claudio;Kern, John
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.215-226
    • /
    • 2016
  • Modeling, control and implementation of a real redundant robot with five Degrees Freedom (DOF) of the SCARA (Selective Compliant Assembly Robot Arm) manipulator type is presented. Through geometric methods and structural and functional considerations, the inverse kinematics for redundant robot can be obtained. By means of a modification of the classical sliding mode control law through a hyperbolic function, we get a new algorithm which enables reducing the chattering effect of the real actuators, which together with the learning and adaptive controllers, is applied to the model and to the real robot. A simulation environment including the actuator dynamics is elaborated. A 5 DOF robot, a communication interface and a signal conditioning circuit are designed and implemented for feedback. Three control laws are executed in: a simulation structure (together with the dynamic model of the SCARA type redundant manipulator and the actuator dynamics) and a real redundant manipulator of the SCARA type carried out using MatLab/Simulink programming tools. The results, obtained through simulation and implementation, were represented by comparative curves and RMS indices of the joint errors, and they showed that the redundant manipulator, both in the simulation and the implementation, followed the test trajectory with less pronounced maximum errors using the adaptive controller than the other controllers, with more homogeneous motions of the manipulator.

A Study on Kinematics and Dynamics Analysis of Vertical Articulated Robot with 6 axies for Forging Process Automation in High Temperatures Environments (고온 환경 단조 공정자동화를 위한 6축 수직다관절 로봇의 기구학 및 동특성 해석에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Koo, Young-Mok;Won, Jong-Beom;Kang, Jeong-Seok;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • In general, articulated robot control technology is limited to the design of robot arm control systems considering each joint of the robot joint as a simple servomechanism. This method describes the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism. The changes of the parameters in the controlled system are significant enough to render conventional feedback control strategies ineffective. This basic control system enables a manipulator to perform simple positioning tasks such as in the pock and place operation. However, joint controllers are severely limited in precise tracking of fast trajectories and sustaining desirable dynamic performance for variations of payload and parameter uncertainties. In many servo control applications the linear control scheme proposes unsatisfactory, therefore, a need for nonlinear techniques that increasing. for Forging process automation.

A Study on the Determination of Linear Model and Linear Control of Biped Robot (이족로봇의 선형모델결정과 제어에 관한 연구)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.765-768
    • /
    • 2000
  • Linearization of the biped dynamic equations and design of linear controller for the linearized equations are studied in this paper. The biped robot with inverted pendulum type trunk, used to stabilize the dynamic balancing of the biped robot during dynamic walking period, is modelled with 14 DOF and simulated. Despite of well defined linear control theories so far, the linear control methods was limited to the applications for a walking robot, because they have been inherently strong nonlinear properties, such as a modeling parameter uncertainties, external forces as noise, inertial and Coriolis terms by three dimensional modeling and so on. To linearize the nonlinear equations of motion of biped robot on MIMO and time varying linear equations of motion, 1st order Taylor series is used to formulate the linear equation. And a 2nd order numerical perturbation method Is used to approximate partial differential equations. Using the linearized equations of motion, a linear controller is designed by pole placement method with feed forward compensation. Using the obtained linearized equations and linear controller, the continuous walking simulation is performed.

  • PDF

A Study on the Real-Tim Path Control of Robot for Transfer Automation of Forging Parts in Manufacturing Process for Smart Factory (스마트 팩토리를 위한 제조공정 내에서 단조 부품의 이송자동화를 위한 로봇의 실시간 경로제어에 관한 연구)

  • Kang, Jung-Seok;Noh, Sung-Hoon;Kim, Du-Beum;Bae, Ho-Yuong;Kim, Sang-Hyun;Im, O-Duck;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.281-292
    • /
    • 2019
  • This paper proposed a new technology to control a path forging parts in limited narrow space of manufacturing process automation for smart factory. In the motion control, we adapted the obstacle avoidance technology based on ultrasonic sensors. The new motion control performance test for a mobile robot is experimented in narrow space environments. The travelling path control is performed by a fuzzy control logic. which plays a role for selecting an appropriate behavior in accordance with the situation in the vicinity of the mobile robot. Ultrasonic sensors installed at the front face of the mobile robot are used. In order to update the current position and heading angle of the mobile robot, a new approch is adapted. The reliability is illustrated by simulation and experiments.

Development of 3 D.O.F parallel robot's simulator for education

  • Yoo, Jae-Myung;Kim, John-Hyeong;Park, Dong-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2290-2295
    • /
    • 2005
  • In this paper, it is developed simulator system of 3 D.O.F parallel robot for educate of expertness. This simulator system is composed of three parts ? 3 D.O.F parallel robot, controller (hardware) and software. First, basic structure of the robot is 3 active rotary actuator that small geared step motor with fixed base. An input-link is connected to this actuator, and this input-link can connect two ball joints. Thus, two couplers can be connected to the input-link as a pair. An end-plate, which is jointed by a ball joint, can be connected to the opposite side of the coupler. A sub-link is produced and installed to the internal spring, and then this sub-link is connected to the upper and bottom side of the coupler in order to prevent a certain bending or deformation of the two couplers. The robot has the maximum diameter of 230 mm, 10 kg of weight (include the table), and maximum height of 300 mm. Hardware for control of the robot is composed of computer, micro controller, pulse generator, and motor driver. The PC used in the controller sends commands to the controller, and transform signals input by the user to the coordinate value of the robot by substituting it into equations of kinematics and inverse kinematics. A controller transfer the coordinate value calculated in the PC to a pulse generator by transforming it into signals. A pulse generator analyzes commands, which include the information received from the micro controller. A motor driver transfer the pulse received from the pulse generator to a step motor, and protects against the over-load of the motor Finally, software is a learning purposed control program, which presents the principle of a robot operation and actual implementation. The benefit of this program is that easy for a novice to use. Developed robot simulator system can be practically applied to understand the principle of parallel mechanism, motors, sensor, and various other parts.

  • PDF

A Study on Image Based Visual Tracking for SCARA Robot

  • Shin, Hang-Bong;Kim, Hong-Rae;Jung, Dong-Yean;Kim, Byeong-Chang;Han, Sung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1944-1948
    • /
    • 2005
  • This paper presents how it is effective to use many features for improving the speed and the accuracy of the visual servo systems. Some rank conditions which relate the image Jacobian and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. Effectiveness of the redundant features is evaluated by the smallest singular value of the image Jacobian which is closely related to the accuracy with respect to the world coordinate system. Usefulness of the redundant features is verified by the real time experiments on a Dual-Arm Robot manipulator made in Samsung Electronic Co. Ltd

  • PDF

Robotic Automation Technologies in Construction : A Review

  • Chu, Baek-Suk;Kim, Dong-Nam;Hong, Dae-Hie
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.85-91
    • /
    • 2008
  • Robot technology is a remarkably interdisciplinary research area, one that can be employed in various industrial fields as well as higher value-added fields. The construction industry, on the other hand, has been known as one of the most difficult research fields to apply robotic schemes. Therefore, applying robot technologies in the construction industry is quite a challenging topic. This paper aims to introduce the progress of automated robotic systems in construction fields, namely with respect to construction robots. While construction robots have a very wide range of application depending on the huge market size of the construction industry, there still exist a lot of problems such as highly risky working environment and inefficiency due to the labor intensive characteristic. In order to solve these problems, a variety of construction robots have been developed and, in this paper, the current state of the robotic systems for construction works and the vision of future robot technology in the construction field are introduced.

DIRECT INVERSE ROBOT CALIBRATION USING CMLAN (CEREBELLAR MODEL LINEAR ASSOCIATOR NET)

  • Choi, D.Y.;Hwang, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1173-1177
    • /
    • 1990
  • Cerebellar Model Linear Associator Net(CMLAN), a kind of neuro-net based adaptive control function generator, was applied to the problem of direct inverse calibration of three and six d.o.f. POMA 560 robot. Since CMLAN autonomously maps and generalizes a desired system function via learning on the sampled input/output pair nodes, CMLAN allows no knowledge in system modeling and other error sources. The CMLAN based direct inverse calibration avoids the complex procedure of identifying various system parameters such as geometric(kinematic) or nongeometric(dynamic) ones and generates the corresponding desired compensated joint commands directly to each joint for given target commands in the world coordinate. The generated net outputs automatically handles the effect of unknown system parameters and dynamic error sources. On-line sequential learning on the prespecified sampled nodes requires only the measurement of the corresponding tool tip locations for three d.o.f. manipulator but location and orientation for six d.o.f. manipulator. The proposed calibration procedure can be applied to any robot.

  • PDF

Development of a 2-DOF Robot System for Harvesting a Lettuce (2 자유도 상추 수확 로봇 시스템 개발)

  • 조성인;장성주;류관희;남기찬
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2000
  • In Korea, researches for year-round leaf vegetables production system are in progress and the most of them are focused on environment control. Automation technologies for harvesting , transporting and grading need to be developed. This study was conducted to develop harvesting process automation system profitable to a competitive price. 1. Manipulator and end-effector are to be designed and fabricated , and fuzzy logic controller for controlling these are to be composed. 2. The entire system constructed is to be evaluated through a performance test. A robot system for harvesting a lettuce was developed. It was composed of a manipulator with 20DOF (degrees of freedom) an end-effector, a lettuce feeding conveyor , an air blower , a machine vision device, 6 photoelectric sensors and a fuzzy logic controller. A fuzzy logic control was applied to determined appropriate grip force on lettuce. Leaf area index and height index were used as input parameters, and voltage was used as output parameter for the fuzzy logic controller . Success rate of the lettuce harvesting system was 93.06% , and average harvesting time was about 5 seconds per lettuce.

  • PDF

On the Development of Robot based Automation System for Loading Cargo in Small and Medium Sub Terminals

  • Park, Jae Min;Lee, Sang Min;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.90-96
    • /
    • 2021
  • The logistics market is continuously growing due to the development of technology and the growth of the online market. In addition, the social atmosphere that emphasizes non-face-to-face due to the pandemic situation is accelerating the growth of logistics. Delivery of goods ordered online requires delivery process through courier worker. In order for the courier worker to ship the product, the work of loading the product on the truck must be preceded. The accident caused by such delivery and loading work is increasing and it is emerging as a social problem. This study proposes a robot-based automated loading system to efficiently handle the increasing volume of courier service and to construct a more efficient and safe working environment by replacing the physical labor that was overloaded to courier workers. The proposed system replaces the loading of the courier worker and proposes the optimal loading function through the automation system.