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ABSTRACT

Cerebellar Model Linear Associator
Net (CMLAN), a kind of neuro-net based adaptive
control function generator, was applied to
the problem of direct inverse calibration of
three and six d.o,f. PUMA 560 robot., Since
CMLAN autonomously maps and generalizes a
desired system function via learning on the
sampled input/output pair nodes, CMLAN allows
no knowledge in systewm nmodeling and other
error sources, The CMLAN based direct inverse
calibration avoids the complex procedure of
jdentifying various system parameters such as
geometric(kinematic) or nongeometric(dynamic)
ones and generates the corresponding desired
caompensated Jjoint conmands directly to each
joint for given target commands in the world
coordinate. The generatled net ocutputs
automatically handles the effect of unknown
system parameters and dynamic error sources,
On-line sequential learning on the
prespecified sampled nodes requires only the
measurement of the corresponding tool tip
locations for three d.o.f. manipulator but
location and orientation for six d.o.f.
manipulator, The proposed calibration
procedure can be applied to any robot.

1. INTRODUCTION

Engineering manipulator control problems
have serious computational shortcomings in
comparison with the siaple or complex motor
behavior performed by biological organisms. In
spite of its high complexity for the trivial
action performed by ordinary organisms, it is
alwost certain that biological organisas do
not solve or model the complex mathematical
formulation for such complicated behavior.
Instead, il seems that biological organisms
use some form of memory driven control system.

Anatomical and neurophysical study of the
cerebellum has led to a theory concerning the
functional operations of the cerebellua.
Cerebellar Model Articulation or Arithmetic
Controller(CMAC) proposed by Albus[1-5] is a
schematical approximate modeling of informa-
tion processing characteristics of the
cerebellum. From the analysis and comparison
of the CMAC net with the linear associator

which is one of well known neural net models,
CMAC is renamed as CMLAN(Cerebellar Model
Linear Associator Net). Through a series of
storages or learnings CMLAN works as a
coaputational module generating weights in a
distributed table look-up manner connected in
parallel. Researches on CMLAN based control
applications can be found in the references
f1,2,6-8}. Details on the structural and
functional characteristics of CMLAN refers to
Hwang[91.

On the other hand, many researchers have
attempted to solve wvarious robot control
problems by applying and modifying well known
neurat net rodels, A generalized back
propagation(BP) delta rule is utilized as one
of the dominent basic nets. In solving a robot
inverse kinematic control! problem, though it
showed favorable results as expected from the
privilege of the BP net[10-~13], the kinematic
accuracy of learned results obtained from BP
was poor to use as direct joint commands,
However, CMLAN gave excellent performance and

could be used as a proper control function
generator[9].
For a robot calibration, Shamma[14]

attempted an inverse robot calibration using
CMI.AN, but failed stating CMLAN is not
suitable as an approxisation device for higher
order surfaces because of its discrete linear
interpolating property. Since CMLAN is a kind
of linear associator which is one of well
known neural nets it is true that it shows a
discrete linear interpolating behavior fronm
the property of generalization, However, CMLAN

can approximate successfully higher order
nonlinear function by introducing several
sub~CMALANs and adjusting the CMLAN input

space., The required number of discrete points
situated between the training points can be
properly controlled vis adjusting CMLAN input
offset and +the size of quantizing block
according to the task requirement,

In this paper, simulated results of
successful CMLAN based direct inverse
calibration for three and six d.o.f. PUMA 560
manipulator and applied learning strategy were
presented,

2, INVERSE ROBOT CALIBRATION
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Robot calibration is a process which
minimizes the worktool location error and gets
much more importance as robot off-line task

teaching increases., 0Off-line task programming
improves the production rate and can easily
access partial robot route change. Moreover it
can adopt the CAD/CAM data directly. However,

it has a problem of total dependence of its
performance on the worktool positional
accuracy.

The worktool positioning error is mainly
caused by the model difference with static and
dynamic effect between the internal robot
controller and actual robot, A model used for
the internal robot controller is called a
nominal model and it can not avoid errors due
to the unmodeled or incomplete phenomena in
the actual. Calibration requires a certain way
of measuring worktool position and is usually
divided into forward and inverse,

Forward calibration is understood similarly
as forward kinematics such that given set of
Joint commands it is a problem of finding the
actual worktool position. Forward calibration
invoives modeling, measurement, identifica~-
tion, and compensation.

Identification is determining kinematic and
/or dynamic parameters of functional
relationship(model) between joint tranceducer

readings and actual end-effector positions,
Compensation is correcting Jjoint wvariable
conmands according to the identified
parameters to position the worktool
accurately. Researches on various process of
forward calibration c¢an be found in many

references{17-21}, They all have a significant
difficulty when modeling of nongeometric or
dynamic parameter error is considered.

On the other hand, inverse calibration is
finding set of joint commands from given
worktool positions., Shanrma[14] stated well
about the privileges of inverse calibration
over forward calibration and other relative
works on this field,

In Shamma’s work, modeling of inverse cali-
bration process was avoided using a black box
method because the inverse modeling is in fact
almost impossible, By cevaluating the
coefficients of approximate function of each
joint which does a curve fitting of the errors

observed between desired and actual worktool
locations, inverse calibration was performed.
As an approximating function, multivariable

orthonormal polynomials were used, and the
data points were selected via method of
Tchebychev spacing.

Kozakiewicz and et. al.[22] attempted to
reduce the locational error caused by the
static deflection of a four d,o.f. direct
drive SCARA robot under loading using a

variational approach of Shamma’s. Least square
approximation of multivariate polynomial
function was used to fit the [joint correction
data and for interpolation. The Jjoint
correction value is function of variables such
as nominal joint angle, arm tip load, and
mnoment. The degree of poiynomial was
determined in an ad hoc basis, The calibration
was performed in the partial(approximately
15%) workspace ,which denotes standard working
area,

They also attempted BP to store the joint
correction data, Relatively poor result was
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obtained compared to the least square
approximation method.

Takanashi{23] implemented BP to improve the
absolute positioning accuracy of six d.o.f.
PUMA  robot, Two sets of two dimensional
endpoint was used as a reference data for
learning, Deviation between the actual and
ideal model was specified wusing only the
differnce of the shoulder link. The
orientation was fixed during the learning and

net performance test.

...There is a difficulty in comparing the
performance of the calibration wethods
mentioned above and this paper’s schenme
because the actual and nominal arm wmodels of
simulated robot and testing condition is
different, However, it is true BP with

relatively small sixe of processing elements
is not proper to a desired function generator.
BP has an inherent local minima problea and
long cpu time for Jlearning as processing
elements gets greater.

On the other hand, CMLAN method in this
paper is the simplest and it shows excellent
calibration performance because it does not
require any coefficient determination of
polynomial approximation function and any

syster modeling,

2.1 CMLAN Based lInverse Direct.

First, it is allowed +to assume the
positional error of worktool caused by the
kinematic and dynamic difference between the
nominal and actual models forms a swrooth,
continuous nonlinear error surface in the

manipulator workspace.

Shamma stated CMLAN is not proper as a
black box for approximating higher order
surface because of its discrete linear

interpolating behavior. Since CMLAN is a kind
of linear associator, one of well known neural
nets, it is true that it shows a discrete
linear interpolating behavior from the
property of generalization due to the unique
structured mapping. Its learning performance
is degraded when sparse discrete nodes are
sampled for training and getls worse when the
CMLLAN  input space grid is formed with
relatively low offset,

However, CMLAN can approximate successfully
higher order nonlinear function by introducing
several sub- CMLANs{9]. And the required
number of discrete points situated between the
training points can be properly controlled
via adjusting CMLAN input space and the size
of quantizing block according to the task
requirement, Moreover, CMLAN does handle large

sizes of input/outpuil pairs efficiently, if
necessary, via LMS(Least Mean Square) error
learning.

CMLAN was successfully implemented to the
inverse robot calibration process without
doing any complex procedure for setting
approximation polynomial and evaluating
corresponding coefficients, Selected training
points were spaced regularly in the CMLAN

input space. And they are actually around the
neighbor of CMLAN input grids.
A scheme of generating desired compensation

Joint wvariable wmovement was adopted from
Shamma. Congidering measurewent of worktool
position and orientation, main three d.o.f.



calibration was performed for PUMA 560 with a
mcasurement of worktool location only. Six
d.o.f. PUMA was also calibrated with simulated
measurements of worktool position{location and
orjentation). Three and six sub-CMLANs were
used for each calibration respectively.

.Same nominal and actual parameters of PUMA
560 including geomefric and non-geometric
effects were adopted as Shamma’s for its
performance comparison, Instead of measuring
actual worktool locations, measured values
were computed from the actual model,

2.2 Three D.O.F, Calibration
Ranges of calibrated workspace for three
d.o.f. were chosen in R6Z cylindrical
coordinate such as
R€ [300,840] in mm unit
6¢1{0,90] in degree unit
Ze [-495,495} in mm unit

The XYZ measurement of worktool location is

only fed through the wain three axes while
keeping other axes fixed., Given target XYZ
worktool location, three sub-CMLANs generste

corresponding sets of delta joint movements
which compensate nominal joint command.

Seven data points were selected with a
uniform interval of 15 unit on each input
range resullting 343 sampled data in the
workspace, One major advantage of CMLAN |is
once quantizing size is kept, CMLAN net
weights can be easily adapted for new sets of
input/output pairs due to its learning
capabilty, For a learning algorithm, on-line
type sequential error correction was used.

CMLAN input space was set up 90 grids for
each range resulling total of 90X90xX90
grids, Quantizing size K and learning gain
were chosen 30 and 0.4 respectively., To
investigate the learned generalization effect
of CMLAN net, the errors over the extended
nodes were also tested by adding an
intermediate node between two sampled nodes
with an interval of 7.5 unit apart on each
inpul range.

Trend of

learning performance is shown at

every five epochs of learning in fig. 1. The
rapid convergence of the learned rms and
maximum errors over sampled and extended nodes
can be seen at the early stage,

Initiaily the simulated res and maximum

workiool location errors of PUMA 560 due to
the geometric and nongeometric effects were
3.90mm and 4,37nm over 343 sampled nodes
respectively, The initial rms and maximum

errors over the extended nodes were 3,92mm and
4.37nm,

After 20 epochs of on-line type sequential
training over the sampled nodes, the rms and
maximun errors were reduced to 7.21E-02mm and
1.78E-Oimm over the sampled and 7.60E-02mm and
2.35E-01me over the extended. After 30 epochs,
the errors were reduced to 6,25E~02mm and
1.73E-0lmm over the sampled and 7.33E-02mn and
2.36E-0lmm over the extended., As fig.2 shows,
the rate of learninng is almost negligibie
after 30 training epochs.

Considering the practical difficulty of
worktool orientation measurement, this process
can be extended to six d.o.f. calibration as
Shamma did. However, additional sub-CMLANs are
only required to learn the proper compensation
tool transformation which yields a different
desired location,
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Fig.1 The learned performance of three axis
robot inverse calibration over the sampled(15

deg) and extended{(7.5 deg) nodes (K=30

and Gain=0.4)

input

2.3 Six DOF Calibration

The inverse calibration of six d,o.f. PUMA
560 was also performed using six sub-CMLANs
under the assumption of measurement on

worktool positions (location and orientation).
Ranges of the «calibrated workspace were
selected in the joint space since the worktool
space of the articulated arm is best defined
in that space. Selected workspace ranges were
represented in degree.

61 €[0,60}

6, [~75,~15]

03€ {105,165}

0a€{15,75]

os€[15,75]

66=0

Total CMLAN input space was constructed as

six dimensional space whose axis has 80 units

each, The last wrist joint was fixed at the
desired worktool pose. However, CMLAN net
makes it move to compensate the orientation
error, For each joint input space, 5 data
points were selected with an interval of 15
unit. The offset of exch input was one unit
resulting one degree in the real Jjoint space.
Total sampled data points were 3125,
Quantizing size K was selected as 30 and

learning gain was selected as 0,5,
The worktool orientation error was computed
using matrix norm defined such that

3 3
HA R = MAX X 1 Arijl
1<is3 j=1
,whereA R = 3 by 3 orientation difference
matrix. The same kinematic and nongeometric
error sources were used for the three main
Jjoints, For the wrist three joints, the
kinematic error source was only sinulated
since the precise nongeometric model of the
wrist. Jjoints was not available., However, the
process of simulation does not make any

difference since it concerns only the error
reading of the measuring device.

The initial simulated rms and maximum
worktool location errors of PUMA 560 were
2.75am and 4.00em over the sampled nodes. The
inital rms and maximum orientation errors were
3.65E-2 and 4,86E~2.



the sampled nodes
at every three epochs was shown in lig.2.
After 30 epochs of learning, the rms and
maximum location errors were 4.72E-02ma and
1.44E-Olmm. the rms and maximum orientation
errors were 1,34E-04 and 5.83K-4,
The extended Rodes were also chosen to show
generalized effect of CMAC net., The
nodes were selected similarly as
inverse calibration., Resulting ras
location errors over the extended

The trend of learing on

the
extended

three axis
and maximua

nndes were 8.22E-02mm and 4.64E~-Oimm, the ras
and maximum orientation errors were 1,75E-04
and 1.87E-03.
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Fig.2 The learned performance of six axis
inverse robot calibration over the sampled
input nodes of 30 degree interval.(K=30 and
Gain=0.5)

3.CONCLUSION

The trained CMLAN network using the sampled
input pattern vectors automatically generates
a linear interpolating results for the
untrained input nodes located among sampled
nodes. With the proper number of sampled input
nodes, CMLAN can learn the desired systen
behavior arbitrarily close.

As  we expected, CMLAN successfully
generates the proper desired functional values
to the problems of a direct inverse
calibration of a manipulator without any
priori knowledge in systenm modeling, detailed
dynamic paramelers, and other error sources
such as deflection under toading,

The performance of the CMLAN based learning
was quite good enough to implement the memory
driven control system., The required systenm
memory for distributed trained data storage
was enourmously small compared to normal table
look-up type storage.

Presented results will accellerate and
extend application of CMLAN to robotics field
such as motion planning and control, sensor
fusion, and obstacle avoidance, CMLAN systenm
controller can be extendeded to contol the
integrated system behavior employing several
sub-CMLANs of different function generator and

1176

controller hierarchically connected each other
in a closed loop. Research and application of
this concept for the task of the sensor
integrated robot system control is widely
apen,
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