• Title/Summary/Keyword: Robot simulation

Search Result 1,696, Processing Time 0.029 seconds

The wing structure modeling of the bioinspired aerial robot (생체모방 공중로봇의 날개 구조 모델링)

  • Choi, Youn-Ho;Cho, Nae-Soo;Joung, Jung-Eun;Kwon, Woo-Hyen;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.404-405
    • /
    • 2012
  • The research of the biological mimics robot which utilizes the operation of the organism and which it applies to the robot is progressed on the ground, aerial, and underwater robot sector. In the field of flying robot, the research for implementing the wing movement structure of the bird and insect is progressed. The joint structure for the wing movement of the bird is implemented. The operation of the wing is simulated. For this purpose, by using the Matlab/Simulink, the joint structure of the wing is modelled. The joint movement of the wing is tested through the simulation.

  • PDF

Study on the Real-Time Walking Control of a Humanoid Robot U sing Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Eung-Hyuk;Lee, Bo-Hee;Kim, Jin-Geol
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.551-558
    • /
    • 2008
  • This paper deals with the real-time stable walking for a humanoid robot, ISHURO-II, on uneven terrain. A humanoid robot necessitates achieving posture stabilization since it has basic problems such as structural instability. In this paper, a stabilization algorithm is proposed using the ground reaction forces, which are measured using FSR (Force Sensing Resistor) sensors during walking, and the ground conditions are estimated from these data. From this information the robot selects the proper motion pattern and overcomes ground irregularities effectively. In order to generate the proper reaction under the various ground situations, a fuzzy algorithm is applied in finding the proper angle of the joint. The performance of the proposed algorithm is verified by simulation and walking experiments on a 24-DOFs humanoid robot, ISHURO-II.

Design Principles and Validation of a Human-sized Quadruped Robot Leg for High Energy Efficiency (에너지 효율적인 인간 크기 4족 보행 로봇의 설계와 검증)

  • Yeom, Hoyeon;Ba, Dang Xuan;Bae, Joonbum
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.86-91
    • /
    • 2018
  • This paper presents about design efforts of a human-sized quadruped robot leg for high energy efficiency, and verifications. One of the representative index of the energy efficiency is the Cost of Transport (COT), but increased in the energy or work done is not calculated in COT. In this reason, the input to the output energy efficiency should be also considered as a very important term. By designing the robot with customized motor housing, small rotational inertia, and low gear ratio to reduce friction, high energy efficiency was achieved. Squatting motion of one leg was performed and simulation results were compared to the experimental results for validation. The developed 50 kg robot can lift the weight up to 200 kg, and during squatting, it showed high energy efficiency. The robot showed 71% input to output energy efficiency in positive work. Peak current during squatting only appears to be 0.3 A.

Force Feedback System of Telepresence Robot for Remote Operation (텔레프레전스 로봇의 원격 조작을 위한 포스 피드백 시스템)

  • Hwang, Jung-Uk;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.586-591
    • /
    • 2015
  • This paper proposes a force feedback system of telepresence robot for remote operation. The ultrasonic sensors attached at the robot detect the obstacles, and generate the force to the operation joystick. In order to consider the network delay, we developed the fuzzy control system using ultrasonic data and robot speed. The method to calculate the force vector from the ultrasonic data is also presented to operate the robot more accurately. The simulation and experimental results are presented to verify the safe and accurate operation of the proposed system.

Human Centered Robot for Mutual Interaction in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.246-252
    • /
    • 2005
  • Intelligent Space is a space where many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents, which provide human with services. To realize this, human and mobile robots have to approach each other as much as possible. Moreover, it is necessary for them to perform interactions naturally. It is desirable for a mobile robot to carry out human affinitive movement. In this research, a mobile robot is controlled by the Intelligent Space through its resources. The mobile robot is controlled to follow walking human as stably and precisely as possible. In order to follow a human, control law is derived from the assumption that a human and a mobile robot are connected with a virtual spring model. Input velocity to a mobile robot is generated on the basis of the elastic force from the virtual spring in this model. And its performance is verified by the computer simulation and the experiment.

Application of an Input Shaping Method for Reduction of Residual Vibration in the Wafer Positioning Robot (웨이퍼 이송 로봇의 잔류진동 저감을 위한 입력성형 기법의 적용)

  • Ahn, Tae-Kil;Yim, Jae-Chul;Kim, Seong-Kun;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.33-38
    • /
    • 2012
  • The wafer positioning robot in the semiconductor industry is required to operate at high speed for the improvement of productivity. The residual vibration caused by the high speed of the wafer positioning robot, however, makes the life of the robot shorter and the cycle time longer. In this study, the input shaping and the path of the system are designed for the reduction of the residual vibration and the improvement of the cycle time. The followings are the process for the reduction and the improvement; 1) System modeling of the wafer positioning robot, 2) Verification of dynamic characteristics of the wafer positioning robot, 3) Input shaping plan using impulse response reiteration, 4) Simulation test using SIMULINK program, 5) Analysis of result.

Collision Avoidance Path Planning for Multi-Mobile Robot System : Fuzzy and Potential Field Method Employed (멀티 모바일 로봇 시스템의 충돌회피 경로 계획 : 퍼지 및 포텐셜 필드 방법 적용)

  • Ahn, Chang-Hwan;Kim, Dong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.163-173
    • /
    • 2010
  • In multi-mobile robot environment, path planning and collision avoidance are important issue to perform a given task collaboratively and cooperatively. The proposed approach is based on a potential field method and fuzzy logic system. For a global path planner, potential field method is employed to select proper path of a corresponding robot and fuzzy logic system is utilized to avoid collisions with static or dynamic obstacles around the robot. This process is continued until the corresponding target of each robot is reached. To test this method, several simulation-based experimental results are given. The results show that the path planning and collision avoidance strategies are effective and useful for multi-mobile robot systems.

Autonomous Navigation for a Mobile Robot Using Navigation Guidance Direction and Fuzzy Control (주행 유도 방향과 퍼지 제어를 이용한 이동 로봇의 자율 주행)

  • Park, Ji-Gwan;Shin, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.108-114
    • /
    • 2014
  • This paper proposes a generation method of a navigation guidance direction and a fuzzy controller to achieve the autonomous navigation of a mobile robot using a particle swarm optimization(PSO) scheme in unknown environments. The proposed navigation guidance direction is the direction that leads a mobile robot to arrive a target point simultaneously with avoiding obstacles efficiently according to the surrounding local informations. It is generated by selecting the most suitable direction of the many directions in the surrounding environment using a particle swarm optimization scheme. Also, a robot can reach a target point with avoiding the various obstacles by controlling the robot so that it can move from its current orientation to the navigation guidance direction using the proposed fuzzy controller. Simulation results are presented to show the feasibility and validity of the proposed robot navigation scheme.

Development and Implementation of Functions for Mobile Robot Navigation (이동 로봇의 자율 주행용 함수 개발 및 구현)

  • Jeong, Seok-Ki;Ko, Nak-Yong;Kim, Tae-Gyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.421-432
    • /
    • 2013
  • This paper describes implementation of functions for mobile robot localization, which is one of the vital technologies for autonomous navigation of a mobile robot. There are several function libraries for mobile robot navigation. Some of them have limited applicability for practical use since they can be used only for simulation. Our research focuses on development of functions which can be used for localization of indoor robots. The functions implement deadreckoning and motion model of mobile robots, measurement model of range sensors, and frequently used calculations on angular directions. The functions encompass various types of robots and sensors. Also, various types of uncertainties in robot motion and sensor measurements are implemented so that the user can select proper ones for their use. The functions are tested and verified through simulation and experiments.

Scheme and Movement/Tension Control of Working Robot for the Installation of an Overhead Power Cable (1) (전력케이블 가설용 작업로봇의 구성과 이동/장력 혼합제어에 관한 연구(1))

  • Choi, Dong Soo;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.28-34
    • /
    • 2016
  • When a electric power cable is installed in the air for newly or exchanged working, it is necessary at all time to hold a constant tension for an overhead power cable. And also a pendanted power cable is an extreme job to have work in a high sky. For this reason, the objective of this paper developments working robot for preventing disaster that tension of cable installed automatically power cable to hold a constant. So the working robot works at all the time two tasks for mobil and tension it come into a inference between two tasks, control is difficult. Control methode needs to suppress inference of two tasks. In this paper, for installation of overhead power cable, the scheme and control methode of working robot is presented. the robot work at a same time tow tasks that have hold a constant tension of the power cable and move a constant place while unfasten a winding cable at a drum on a chassis. Working robot consist of three parts with mobile system, tension system and control part. As it is applied the feedback/feedforward control, methode of hybrid control is established to suppress that interference come into between two tasks. The simulation programs is made out using models of mobil and tension system, and a proposed controllers. In accordance with simulation, the model of each systems is discussed to make out proper. And also parameters of controllers is selected a suitable value and the driving performance of robot is evaluated.