• Title/Summary/Keyword: Robot programming

Search Result 420, Processing Time 0.03 seconds

In-Process Relative Robot WorkCell Calibration

  • Wang, Jianjun;Sun, Yunquan;Gan, zhongxue
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.269-272
    • /
    • 2003
  • Industry is now seeing a dramatic increase in robot simulation and off-line programming. In order to use off-line programming effectively, the simulated workcell has to be identical to the real workcell. This requires an efficient and accurate method for the workcell calibration. Currently used techniques in the industry, however, are typically time-consuming, expensive and therefore not suitable for in-process application. This is because most of these techniques are based on the so-called “absolute calibration” method. In contrast to absolute method, relative calibration only measures the difference of an interested object relative to a standard reference. Owing to the small measurement range requirement, relative calibration method is very cheap and can achieve very high accuracy. In this paper the relative method is applied to calibrate an entire grinding workcell. Linear gauge is the only measurement device used. This workcell calibration includes tool center point (TCP) calibration and work object frame calibration. Due to the efficiency of the calibration algorithm and the simplicity of the calibration setup, the described calibration procedure can be done in process.

  • PDF

Two Evolutionary Gait Generation Methods for Quadruped Robots in Cartesian Coordinates Space and Join Coordinates Space (직교좌표공간과 관절공간에서의 4족 보행로봇의 두 가지 진화적 걸음새 생성기법)

  • Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.389-394
    • /
    • 2014
  • Two evolutionary gait generation methods for Cartesian and Joint coordinates space are compared to develop a fast locomotion for quadruped robots. GA(Genetic Algorithm) based approaches seek to optimize a pre-selected set of parameters for the locus of paw and initial position in cartesian coordinates space. GP(Genetic Programming) based technique generate few joint trajectories using symbolic regression in joint coordinates space as a form of polynomials. Optimization for two proposed methods are executed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are analysed in terms of different coordinate spaces.

Visual servoing of robot manipulators using the neural network with optimal structure (최적화된 신경회로망을 이용한 동적물체의 비주얼 서보잉)

  • 김대준;전효병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.302-305
    • /
    • 1996
  • This paper presents a visual servoing combined by Neural Network with optimal structure and predictive control for robotic manipulators to tracking or grasping of the moving object. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we want to predict the updated position of the object. The Kalman filter is used to estimate the motion parameters, namely the state vector of the moving object in successive image frames, and using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. The validity and effectiveness of the proposed control scheme and predictive control of moving object will be verified by computer simulation.

  • PDF

A design of a Creativity improvement Program for an Programming Line-Tracer Learning (프로그래밍형 라인트레이서 학습을 통한 창의력 향상 프로그램 설계)

  • Kim, Jin-Woong;Moon, Wae-Shik
    • 한국정보교육학회:학술대회논문집
    • /
    • 2011.01a
    • /
    • pp.113-118
    • /
    • 2011
  • In this study, to improve creativity and problem solving skills of students we design the program using the programming Line-tracer(it can become the basis of robot-education) and the learning model is implemented. the result of applying was an important evaluation factors to algorithms and problem solving skills improvement.

  • PDF

A Study on the Development and Construction of a programming language for SCARA Type Robots (SCARA형 로보트의 프로그래밍 언어개발 및 구성에 관한 연구)

  • 고명삼;이범희;이기동;김대원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.11
    • /
    • pp.796-803
    • /
    • 1988
  • In this paper, the design method, design techniques and structure of a language for a SCARA type industrial robot, are presented. The proposed new language is modular and expandable using the C programming language and the 8086 assembly language. It is composed of monitor mode which controls the main flow of the programs, editing mode which generates, corrects and edits the programs, execution mode which executes the generated programs, I/O mode which interacts with the external devices, and teach mode. The developed language is implemented on the robot controller to verify its performance.

  • PDF

Visual-Servoing Control of Robot Manipulator (로봇 매니퓰레이터의 시각구동제어)

  • 신행봉;정동연;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.213-218
    • /
    • 2003
  • The equipment of industrial robot in manufacturing and assembly lines has rapidly increased. In order to achieve high productivity and flexibility, it becomes very important to develop the visual feedback control system with Off-Line Programming System(OLPS). We can save much efforts and time in adjusting robots to newly defined workcells by using OLPS. A proposed visual calibration scheme is based on position-based visual feedback. The calibration program firstly generates predicted images of objects in an assumed end-effector position. The process to generate predicted images consists of projection to screen-coordinates, visible range test and construction of simple silhouette figures. Then camera images acquired are compared with predicted ones for updating position and orientation data. Computation of error is very simple because the scheme is based on perspective projection which can be also expanded to experimental results. Computation time can be extremely reduced because the proposed method does not require the precise calculation of tree-dimensional object data and image Jacobian.

  • PDF

Development of off-line Robot Task Programming System for Polishing Process of Sculptured Surfaces (자유곡면의 연마공정을 위한 오프라인 로봇작업 프로그래밍 시스템의 개발)

  • Chung, Seong-Chong;Kuk, Keum-Hwan;Choi, Gi-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.84-94
    • /
    • 1991
  • In order to achieve high accuracy of teaching and increase productivity using industrial robots in polishing process of dies, an off-line task programming system was developed on IBM-PC/386 under WINDOWS 3.0 operating system. The internal structure and the machematical basis of CAMPoli are described. Surface modeling technique of polishing dies with sculptured surfaces is introduced by poing data interpolation methodology through the use of CL-data transmitted from conventional CAM system. Tool selection, polishing speed, polishing pressure and kinds of tool motions can be determined and selected by user specified polishing variables. Task creation and verification of polishing path via computer graphics simulation of polishing tool can be done by the menu- driven function of CAMPoli system. Post-processing module is attached to generate robot language. Some simulation results are provided as verification means of the system.

  • PDF

An Efficient Calibration Procedure of Arc Welding Robots for Offline Programming Application (아아크 용접용 로보트의 오프라인 프로그램 응용을 위한 효과적 캘리브레이션 방법 연구)

  • Borm, Jin-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.131-142
    • /
    • 1996
  • Most industrial robots cannot be off-line programmed to carry out a task accurately, unless their kinematic model is suitably corrected through a calibration procedure. However, normal calibration is an expensive and time-consumming precedure due to the highly accurate measurement equipment required and due to the significant amount of data that must be collected. This paper presents a simple and economic procedure to improve the efficiency of robot calibration especially for arc welding application. To simplify the measurement process, an automotic data measurement algorithm as well as a simple measurement device are developed. Also, a calibration algorithm which can automatically identify the independent model parameters to be estimated is presented. To demonstrated the simplicity and the effectiveness of the procedure, experimental studies and computer simulations are performed and their results are discussed.

  • PDF

Real-time EtherCAT Master Implementation on Xenomai for a Robot System

  • Moon, Yong-Seon;Ko, Nak-Yong;Lee, Kwang-Seok;Bae, Young-Chul;Park, Jong-Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.244-248
    • /
    • 2009
  • This paper describes a real-time EtherCAT Master library. The library is developed using Xenomai. Xenomai is a real-time development framework. It cooperates with the Linux kernel, in order to provide a pervasive, interface-agnostic, hard real-time support to user-space applications, seamlessly integrated into the GNU/Linux environment. The proposed master library implements EtherCAT protocol for master side, and supports Application Programming Interfaces(APIs) for programming of real-time application which controls EtherCAT slave.

Development of Smart Device based Elementary Robot Programming Course for Improving Convergence Thinking (융합적 사고 향상을 위한 스마트 기기 기반의 초등 로봇 프로그래밍 교육 방법 개발)

  • Yoon, Il-Kyu;Jang, Yun-Jae;Lee, Won-Gyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.235-236
    • /
    • 2014
  • 본 논문에서는 스마트 기기로 제어 가능한 교육용 로봇을 활용하여 초등 학습자들의 융합적 사고를 향상 시킬 수 있는 교육방법을 제안하고자 한다. 초등 학습자들을 대상으로 실질적인 융합 교육이 이루어지기 위해서는 융합 과정을 체계적으로 체험하고, 이러한 과정을 통해서 새로운 가치를 발견하고 구체화 할 수 있는 환경이 요구된다. 따라서 본 논문에서는 융합 과정을 학습자들의 수준에 맞게 세분화하고 학습자들의 흥미와 창의성 발현에 효과적인 스마트 기기 기반의 교육용 로봇을 활용하여 구체화 할 수 있는 교육 방법을 설계하였다.

  • PDF