

International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 3, September 2009 pp. 244-248

244

Real-time EtherCAT Master Implementation on Xenomai for a Robot System

Yongseon Moon*, †Nak Yong Ko**, Kwangseok Lee***,
Youngchul Bae **** and Jong Kyu Park*****

*School of Information Communication, Sunchon National University, Korea, moon@ sunchon.ac.kr

**Dept. Control, Instrumentation, and Robot Engineering, Chosun University, Korea, nyko@chosun.ac.kr
***Robotics Institute, Redone Technologies, Ltd., lks@urc.kr

****Division of Electrical Electronic Communication, Chonnam National University, Yeosu, Korea,
ycbae@chonnam.ac.kr

*****Korea Institute of Science and Technology Information

Abstract
This paper describes a real-time EtherCAT Master library. The library is developed using Xenomai. Xenomai is a real-time development
framework. It cooperates with the Linux kernel, in order to provide a pervasive, interface-agnostic, hard real-time support to user-space
applications, seamlessly integrated into the GNU/Linux environment. The proposed master library implements EtherCAT protocol for master
side, and supports Application Programming Interfaces(APIs) for programming of real-time application which controls EtherCAT slave.

Key Words: EtherCAT, Xenomai, real-time, master, slave

1. Introduction

EtherCAT implements master/slave architecture over

standard Ethernet. The master controls a chain of EtherCAT
devices. There have been some EtherCAT masters developed
on several different platforms[1]. Some of the masters support
real-time operations while some others only do non-real time
operations[2].

In some applications, real-time performance is vital to
control an intelligent and dynamic system. Especially in
robotics, real-time performance is critical because each
component of the system should work in corporation and
coordination. As an example, time-critical coordination of
motions of joints and sensors is indispensible for a humanoid
robot which has many degrees of freedom(over 30) to function
successfully[3]. In this case, a protocol which supports fast
transfer and guarantees strict synchronization is required.
EtherCAT is one of the promising protocols for this
purpose[4,5,6,7]. The master library developed in this research
provides APIs enabling application developers to communicate
with and control EtherCAT Slaves. The library uses Xenomai
to provide real-time support with the order of micro seconds of
latency.

Generally, EtherCAT master plays an intermediary role
between application and EtherCAT slave[6]. Most of the
masters work in transparency to application layer. Master
services run in back-ground and are responsible for managing

slave states, processing data and responding to application
requests.

The main characteristic of a slave device is its state. In each
state, slave device just can execute some specific services.
Most of services can be executed in operational state. Therefore,
before allowing application layer to communicate with slave,
master must setup the proper state for the slave device.

The paper begins with introduction in section I, followed by
discussions on Xenomai in section II. Section III explains
system structure of a robot in which the master is implemented.
Section IV describes how the master is designed. The proposed
system is implemented and tested. The result of the test is
detailed in section V. Section VI closes the paper with some
remarks on the proposed master design.

2. Real-Time Operating System

A robot system is required to be real time system. Especially

for a humanoid robot which is highly dynamic system to work
in robust and stable manner, real time performance with the
servo frequency of kilo hertz is strongly recommended[3].
There are some operating systems or platforms which support
real-time operation: Windows CE, INtime, RTLinux, RTAI,
Xenomai, BlueCat Linux, MontaVista Linux, and TimeSys
Linux [8,9,10].

With a licensed product, we can obtain a good service but
they only support in the limited range. Even if the solution is
not the best design for our system, we can not modify it. On the
other hand, for an open source product, we can modify the
source code to make it best suitable for our system. Linux is
open source product which is widely in use.

Use of RTAI and Xenomai endows the Linux with real time
performance. Both the RTAI and Xenomai use the same ideas

Manuscript received Jul. 17. 2009; revised Sep. 9. 2009.
This research was supported by the “GRRC” project of
Gyeonggi Provincial Government, Republic of Korea.
†Corresponding author: Nak Yong Ko, Chosun Univ.,
nyko@chosun.ac.kr

Real-time EtherCAT Master Implementation on Xenomai for a Robot System

245

and support RTDM layer. However, they have some
differences in the goals and the way for implementation. RTAI
is focused on improving performance to get the lowest latency,
while Xenomai considers extensibility, portability and
maintainability as well as low latency[11,12]. Table 1
compares RTAI and Xenomai.

Table 1. Comparison of RTAI and Xenomai

RTAI Xenomai
Architecture support

x86, x86-64, PowerPC, ARM,
MIPS

X86, x86-64, PowerPC, ARM,
PowerPC64, Blackfin

Space
Kernel, user Kernel, user

APIs
RTAI, POSIX 1003.1b, RTDM Xenomai Native, Posix 1003.1b,

RTAI, VxWorks, pSos+, VRTX
uITRON, RTDM

Xenomai supports a lot of CPU architectures and APIs. This

feature enables users to port applications from one to another
architecture. Besides, the mailing list of Xenomai project
provides good support for the developers with its prompt and
active responses. In these respects, Xenomai is used to develop
real time EtherCAT master library in this research.

3. System Architecture

The robot system in this work consists of the four layers:

Applications, EtherCAT master, Xenomai, and real-time driver.
Each layer has the following functions. Fig.1. depicts the
architecture.

(1) Application layer: Users use the master library to develop
their own applications.

(2) EtherCAT Master: We use APIs which Xenomai
supports to develop real-time EtherCAT master Library in user
space. It includes two main parts: XML parser and EtherCAT
master core. XML parser is needed because the configuration
information of slaves is obtained from XML file. EtherCAT
master core is responsible for managing slave states and
enables data communication between application and slaves. It
begins to work when user application calls the function
“Start(),” and runs until the function “Stop()” is called. User
application accesses EtherCAT master services by calling
EtherCAT master APIs.

(3) Xenomai-Linux platform: The platform supports real-
time system calls which can be used in user space or kernel
space. Native and POSIX APIs are used to develop EtherCAT
Master Library. Xenomai includes various layers. The Adeos
plays the role of virtualizing hardware interrupts; this layer
provides basic service of enabling the Linux to run in real-time
which is the attribute of Xenomai. The Adoes is directly
exposed to the hardware abstraction layer. Most of the requests
for Adeos services are issued from HAL layer. The nucleus

layer realizes real-time functionality.
(4) RTnet – Real time driver: After installing Xenomai to

endow the standard Linux with real-time capability, all
standard Linux services still run normally without updating
new driver. Non real-time task can still use devices with old
(non real-time) drivers. However, if a real-time task use non
real-time services it will be changed to secondary mode and run
as normal Linux tasks. To obtain hard real-time response, real-
time driver must be used. For this purpose, RTnet is the best
solution[9,12,13]. RTnet supports several popular NIC adapters
including Gigabit Ethernet. In case of EtherCAT master, RTnet
provides POSIX socket APIs enabling real-time
communication with slaves.

Fig. 1 System architecture

4. EtherCAT Master Design

It is desirable for the real-time EtherCAT master library to

be simple, efficient and user-friendly to provide users with
convenient tool for slave control. In addition, portability to
other architectures is very important for the master. At present,
C and C++ are supported in many architectures and they are
familiar to most of the developers. So using Native and POSIX
APIs is a good choice to satisfy these requirements. The
proposed architecture is shown in Fig. 2.

Fig. 2 EtherCAT master library

There are four major components in the master library:

Config info, sender/receiver, master controller, and Cyclic.

International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 3, September 2009

246

They have the following functions.
(1) Config info stores the information about slaves.
(2) Sender/receiver is responsible for sending and receiving

packets in real-time.
(3) Master controller which is the heart of master library

manages all operations.
(4) Cyclic maintains the communication between master and

slave.
To obtain the best performance of the tasks, each component

should have suitable priority. XML parser gets information of
slaves from configure file and then saves the information into
Config info object. The response time for this task impose no
restriction on the overall performance because it just run only
once when user starts the library. So the XML parser has the
lowest priority.

To read information from XML file, one can also use an
XML parser library available from GNOME such as libxml2.
However, in case of EtherCAT master, there are some features
which impede application of libxml2. One of the
disadvantageous features is the size of the library. Big size of
the library causes some problems when porting it to an
embedded system[14,15]. To solve the problem, this paper
proposes developing a simple XML parser module which fits to
EtherCAT master implementation.

EtherCAT frame header does not include any headers of
transport layer or network layer. To send and receive packets,
the proposed master uses raw socket with real-time network
driver supported by RTnet. The priority of the sender can be
adjusted depending on the importance of the data. If it is
required to send a data urgently, sender will be assigned higher
priority(TASK_PRIO 99). Cyclic frame is sent by the sender
with high priority(TASK_PRIO 97). Sender always runs to get
response packets from the slave with the same priority.

While a slave is running, most of constructions which
control slave are included in some fields of cyclic frame. It
means that cyclic frame format will not change. Therefore, to
improve the performance, cyclic frame is cached in memory
and sent to slaves after a period of time. Some fields of cyclic
frame will be updated if needed.

Master controller is the most important component. It
controls other components, processes data and issues suitable
action to control slaves. As we discussed above, EtherCAT
slaves have different characteristics from other types of devices.
One of the characteristics is the state of slaves. There are
several states of slave: Init state, Pre-Operational, Safe-
Operational, Operational, and Bootstrap(optional).

Each state has its required services. Master should provide
all services required after slaves confirm the state change. The
transition from Init state to Operational state follows the
sequence: Init, Pre-Operational, Safe-Operational, and
Operational. In order to change the slave state to Operational, a
developer can change the state in sequence, or change the state
at the same time.

Though the time needed to create one EtherCAT frame
header is small, it increases with the number of packets. To

optimize the payload of each packet sent, it is required to
change all slave states at the same time. Basically, we have
three state changes for a slave: Init to Pre-Operational (I2P),
Pre-Optional to Safe-Operational(P2S), and Safe-Operational
to Operational (S2O).

The proposed solution to I2P stage will be explained. Similar
approach is used for the solution to other stages. In this stage,
master must provide all the services which the slave requires.
Information about these services stored in init command with
transition field is “IP.” We create a frame containing all
services required and send the frame to slaves, and in turn,
create other frames until all the slaves change to Operational
state.

On master side, we can not change the time between sending
a packet and receiving the response from slave for the packet,
because it depends on the number of slaves and the process
time of each slave. To minimize the time between two packet
sending, we assign high priority(TASK_PRIO 98) to the master
controller task. Though TASK_PRIO 98 is not the highest
priority, controller task always runs until EtherCAT master
stops. As we discuss above, a sender task has the highest
priority (TASK_PRIO 99). However, the task is created by
master controller task, and stops itself after finishing data
sending. Therefore, only one master controller task runs with
the highest priority, so that the master provides real-time
services to users.

The APIs should be easy to use to make the master library as
simple as possible to the user. The API has the five functions.

(1) LoadConfig() function: This function should be called
before any other function call. XML parser will parse the
information stored in XML file and save it into the Config Info
object.

(2) Start() function: The function Start() lets the master
controller use information stored in Config Info object to
change all slaves’ state to Operational. In addition, Cyclic
frame is created and sent to slaves after a period of time. Then,
a user can use WriteData() or ReadData() function.

(3) WriteData() function: When this function is called,
master updates cyclic frame and then send data to slaves
immediately.

(4) ReadData() function: Master does not know when a user
calls ReadData() function. It takes some micro seconds for the
packets to be sent from master to slave. Master cannot store all
packets. After receiving a packet, Receiver will store it in a
buffer. If next packet arrives, the next packet will be
overwritten to the buffer. Therefore, the ReadData() function
returns the latest packet received from slaves.

(5) Stop() function: The function Stop() stops all master
services and frees memory.

All the above functions are built as shared library so that a
user can use these functions with no build time. But it can
cause some complexity when a user compiles an application
because Xenomai environment can have some new options in
the shared library.

Real-time EtherCAT Master Implementation on Xenomai for a Robot System

247

5. Experiments

Using the proposed approach, the authors have developed a

real-time EtherCAT master library that provides several APIs
to users. As an application which uses these APIs, a slave
system which turns on and off LEDs is built. The master and
slave system include a Xenomai – Linux PC and two
EtherCAT slaves. The Xenomai – Linux PC has CPU Intel core
2 dual 2.8 GHz, 2 GB RAM, and 250 GB HDD.

In this application, we set Xenomai task to use a 200
microsecond tick. To capture real-time packet transfer,
Wireshark with RTnet plug-in is used. It is found that in most
of the cases it takes 200 microseconds to transfer a packet to
and from the master and slave. A package has 60 bytes of data.
The packet transfer time is shown in the Fig. 3. Unlike other
data transfer protocols, the extra time required to transfer data
to the additional slaves is much less than 200 microseconds.
The extra time is 1~2 microseconds per one slave system.
However, in many other protocols, the data transfer time is
multiplication of transfer time per slave and the number of
slaves.

Fig. 3 Packet transfer time

6. Conclusion and Future Work

The proposed EtherCAT master library runs on Xenomai-

Linux PC. With one master and two slaves, the average transfer
time is 200 microseconds per packet of 60 bytes. It is expected
that on an embedded system with limited memory and
processing power, performance of Xenomai based real time
EtherCAT may deteriorate. It is suggested for further research
that EtherCAT master be implemented on embedded Xenomai
system and the performance of the EtherCAT master be
analyzed for improvement[14,15].

References

[1] D. Jansen, H. Buttner, “Real-time Ethernet, the EtherCAT
Solution,” Computing and Control Engineering Journal, vol.
15, no. 1, pp. 16-21, Feb.-March 2004.

[2] Max Felser, “Real-Time Ethernet - Industry Prospective,”
Proceedings of the IEEE, vol. 93, no. 6, pp. 1118-1129, June
2005.

[3] M. Konyev, F. Palis, Y. Zavgorodniy, A. Melnikov, A.
Rudskiy, A. Telesh, “Walking Robot “ANTON”: Design,
Simulation, Experiments,” in Proc. Eleventh International
Conference on Climbing and Walking Robots and the Support
Technologies for Mobile Machines, 08–10 September 2008,
Coimbra, Portugal.

[4] Qian-Liang Xiang, Zhi-Yuan Xin, Ji-Ru Lin, Guo-Jie Li, Hao
Liang, Juan Li, “Application of the Real-time EtherCAT
Technology in Power Systems,” Relay. vol. 36, no. 11, pp. 42-
45, 1 June 2008, Relay Press.

[5] S.G. Robertz, K. Nilsson, R. Henriksson, A. Blomdell,
“Industrial Robot Motion Control with Real-time Java and
EtherCAT,” in Proceedings of 2007 IEEE Conference on
Emerging Technologies and Factory Automation, pp. 1453-
1456, Sept. 2007.

[6] B. Finkemeyer, T. Kröger, D. Kubus, M. Olschewski, and F.
Wahl, “MiRPA: Middleware for Robotic and Process Control
Applications,” Proc. 2007 IEEE International Conference on
Intelligent Robots and Systems, San Diego, USA, pp. 76-90,
October 2007.

[7] Beckhoff website, http://www.beckhoff.com/
[8] A. Macchelli, C. Melchiorri, R. Carloni, M. Guidetti, “Space

Robotics: an Experimental Set-up Based on RTAI-Linux,”
Proc. 4th Real Time Linux Workshop, Boston, USA, 6-7
December 2002.

[9] J. Kiszka, B. Wagner, “RTnet - a Flexible Hard Real-time
Networking Framework,” in Proc. 2005 IEEE Conference on
Emerging Technologies and Factory Automation, pp. 449-456,
Sept. 2005.

[10] RTAI website, http://www.rtai.org
[11] Xenomai website, http://www.xenomai.org
[12] Xenomai and RTnet website, http://www.xenomai.org

/index.php/RTnet:Main
[13] RTnet website, http://www.rtnet.org/
[14] S. Potra, G. Sebestyen, “EtherCAT Protocol Implementation

Issues on an Embedded Linux Platform,” in Proceedings of
2006 IEEE International Conference on Automation, Quality
and Testing, Robotics, pp. 420-425, May 2006.

[15] Jens Onno Krah, Christoph Klarenbach, “FPGA Based Field
Oriented Current Controller for High Performance Servo
Drives,” in Proc. Power Conversion Intelligent Motion, Power
Quality, Nürnberg, 27-29 May 2008.

International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 3, September 2009

248

Yongseon Moon received the B.S. degree,
M.S. degree, and Ph.D. degree from the
Division of Electronics Engineering, Chosun
University, Korea. He is Professor of the
school of information communication,
Sunchon National University, Korea, from
1992. His research interests include industry
communication, robot internal network

technology by EtherCAT, middleware and nerves network.

Phone : +82-61-753-1133
Fax : +82-62-373-2022
E-mail : moon@sunchon.ac.kr

Nak Yong Ko received the B.S. degree, M.S.
degree, and Ph.D. degree from the
Department of Control and Instrumentation
Engineering, Seoul National University,
Korea, in the field of robotics. He is
Professor of the department of Control,
Instrumen-tation, and Robot Engineering,
Chosun University, Korea, from 1992.

During 1996~1997 and 2004~2005, he worked as a visiting
research scientist at the Robotics Institute of Carnegie Mellon
University. His research interests include autonomous motion
of mobile robots(collision avoidance, localization, map
building, navigation, and planning), manipulator force/torque
control, and incorporation of mobile robot technology into GIS.

Phone : +82-62-230-7108
Fax : +82-62-233-6896
E-mail : nyko@chosun.ac.kr

Kwangseok Lee is a Research Engineer in
Robotics Institute at REDONE Tech. He
earned B.S. degree, M.S. degree from
division of Electrincs Engineering, Sunchon
National University, Korea in 2006, 2008.
since 2005, he worked in Robotics Institute
at REDONE Tech. his research interests are
ubiquitous sensor network for robot location,

embedded system for intelligent robot, Robot network by
EtherCAT, middle ware and nerves network.

Phone : +82-062-375-2003
E-mal : lks@urc.kr

Young-Chul Bae received his B.S degree,
M.S and Ph. D. degrees in Electrical
Engineering from Kwangwoon University in
1984, 1986 and 1997, respectively. From
1986 to 1991, he joined at KEPCO, where
he worked as Technical Staff. From 1991
to1997, he joined Korea Institute of Science
and Technology Information (KISTI), where

he worked as Senior Research. In 1997, he joined the Division
of Electron Communication and Electrical Engineering, Yosu
National University, Korea. In 2006, he joined the School of
Electrical • Electronic Communication and Computer
Engineering of Chonnam National University, where he is
presently a professor. His research interest is in the area of
Chaos Nonlinear Dynamics that includes Chaos
Synchronization, Chaos Secure Communication, Chaos Crypto
Communication, Chaos Control and Chaos Robot, Robot
control etc.

Jong Kyu Park received his B.S and M.S
degrees in Electronics Engineering from
Chungang University, Seoul Korea, in 1984
and 1990 respectively. From 1986 to 1988,
he joined at Changyongsik Patent & Law
office, where he worked as Patent Analysis
Staff. From 1990 to 1991, he joined at LGE,
where he worked as Technical Staff. In 1991,

he joined Korea Institute of Science and Technology
Information (KISTI), where he is presently a Senior Researcher.
His research interest is in the area of Information Analysis that
searches a Future Promising Technology.

