• Title/Summary/Keyword: Robot localization

Search Result 587, Processing Time 0.024 seconds

Selective Activation for Global Ultrasonic System (전역 초음파 시스템의 선택적 활성화)

  • Kim Jin-Won;Kim Yong-Tae;Hwang Samuel B.;Yi Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.955-961
    • /
    • 2006
  • The global ultrasonic system for the self-localization of a mobile robot consists of several ultrasonic transmitters fixed at some reference positions in the global coordinates of robot environment. By activating the ultrasonic transmitters, the mobile robot is able to get the distance to the ultrasonic transmitters and compute its own position in the global coordinate. Due to the limitation on the ultrasonic signal strength and beam width as well as the environmental obstacles however, the ultrasonic signals from some generator may not be transmitted to the robot. Thus, instead of activating the all ultrasonic transmitters, it is necessary to select some ultrasonic generators to activate based on the current robot position. In this paper, we propose a selective activation algorithm for self-localization with the global ultrasonic system. The selective activation algorithm gets the meaningful ultrasonic data at every sampling instants, which results in the faster and more accurate response of the self-localization than the conventional sequential activation. Through the self-localization and path following control, we verify the effectiveness of the proposed selective activation algorithm.

A Real-time and Off-line Localization Algorithm for an Inpipe Robot by Detecting Elbows (엘보 인식에 의한 배관로봇의 실시간 위치 추정 및 후처리 위치 측정 알고리즘)

  • Lee, Chae Hyeuk;Kim, Gwang Ho;Kim, Jae Jun;Kim, Byung Soo;Lee, Soon Geul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1044-1050
    • /
    • 2014
  • Robots used for pipe inspection have been studied for a long time and many mobile mechanisms have been proposed to achieve inspection tasks within pipelines. Localization is an important factor for an inpipe robot to perform successful autonomous operation. However, sensors such as GPS and beacons cannot be used because of the unique characteristics of inpipe conditions. In this paper, an inpipe localization algorithm based on elbow detection is presented. By processing the projected marker images of laser pointers and the attitude and heading data from an IMU, the odometer module of the robot determines whether the robot is within a straight pipe or an elbow and minimizes the integration error in the orientation. In addition, an off-line positioning algorithm has been performed with forward and backward estimation and Procrustes analysis. The experimental environment has consisted of several straight pipes and elbows, and a map of the pipeline has been constructed as the result.

Localization of Mobile Robot In Unstructured Environment using Auto-Calibration Algorithm (Auto-Calibration을 이용한 Unstructured Environment에서의 실내 위치추정 기법)

  • Eom, We-Sub;Seo, Dae-Geun;Park, Jae-Hyun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.211-217
    • /
    • 2009
  • This paper proposes a way of expanding the use area of localization technique by using a beacon. In other words, we have developed the auto-calibration algorithm that recognizes the location of this beacon by attaching the beacon on an arbitrary position and by using the information of existing beacon under this situation. By doing so, the moving robot can overcome the limitation that the localization of moving robot is only possible within the area that has installed the existing beacon since the beacon cannot be installed on the accurate location when passing through a danger zone or an unknown zone. Accordingly, the moving robot can slowly move to the unknown zone according to this auto-calibration algorithm and can recognize its own location at a later time in a safe zone. The localization technique is essentially needed in using a moving robot and it is necessary to guarantee certain degree of reliability. Generally, moving robots are designed in a way to work well under the situation that the surroundings is well arranged and the localization techniques of using camera, laser and beacon are well developed. However due to the characteristics of sensor, there may be the cases that the place is dark, interfering radio waves, and/or difficult to install a beacon. The effectiveness of the method proposed in this paper has been proved through an experiment in this paper.

Localization Error Recovery Based on Bias Estimation (바이어스추정을 기반으로 한 위치추정의 오차회복)

  • Kim, Yong-Shik;Lee, Jae-Hoon;Kim, Bong-Keun;Ohba, Kohtaro;Ohya, Akihisa
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.112-120
    • /
    • 2009
  • In this paper, a localization error recoverymethod based on bias estimation is provided for outdoor localization of mobile robot using different-type sensors. In the previous data integration method with DGPS, it is difficult to localize mobile robot due to multi-path phenomena of DGPS. In this paper, fault data due to multi-path phenomena can be recovered by bias estimation. The proposed data integration method uses a Kalman filter based estimator taking into account a bias estimator and a free-bias estimator. A performance evaluation is shown through an outdoor experiment using mobile robot.

  • PDF

Localization for Mobile Robot Using Vertical Line Features (수직선 특징을 이용한 이동 로봇의 자기 위치 추정)

  • 강창훈;안현식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.937-942
    • /
    • 2003
  • We present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images from the surroundings having vertical line edges by one camera. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right regions of the each line are computed by using the properties of the line and a region growing method. The pattern vectors are matched with the feature points of the map by comparing the color information and the geometrical relationship. From the perspective transformation and rigid transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.

Implementation of Global Localization and Kidnap Recovery for Mobile Robot on Feature Map (표식 지도를 이용한 이동로봇의 광역 위치인식 및 kidnap recovery)

  • Lee, Jung-Suk;Lee, Kyoung-Min;Ahn, Sungh-Wan;Choi, Jin-Woo;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.29-39
    • /
    • 2007
  • We present an implementation of particle filter algorithm for global localization and kidnap recovery of mobile robot. Firstly, we propose an algorithm for efficient particle initialization using sonar line features. And then, the average likelihood and entropy of normalized weights are used as a quality measure of pose estimation. Finally, we propose an active kidnap recovery by adding new particle set. New and independent particle set can be initialized by monitoring two quality measures. Added particle set can re-estimate the pose of kidnapped robot. Experimental results demonstrate the capability of our global localization and kidnap recovery algorithm.

  • PDF

Localization of Mobile Robots by Full Detection of Ceiling Outlines (천장 외곽선 전체 검출에 의한 모바일 로봇의 위치 인식)

  • Kim, Young-Gyu;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1283-1289
    • /
    • 2016
  • In this paper, we propose a new localization system using ceiling outlines. We acquire the entire ceiling image by using fisheye lens camera, and extract the lines by binarization and segmentation. The optical flow algorithm is then applied to identify the ceiling region from the segmented regions. Finally we obtain the position and orientation of the robot by the center position and momentum of ceiling region. Since we use the fully detected outlines, the accuracy and reliability of the localization system is improved. The experimental result are finally presented to show the effectiveness of the proposed method.

An Embedded Solution for Fast Navigation and Precise Positioning of Indoor Mobile Robots by Floor Features (바닥 특징점을 사용하는 실내용 정밀 고속 자율 주행 로봇을 위한 싱글보드 컴퓨터 솔루션)

  • Kim, Yong Nyeon;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.293-300
    • /
    • 2019
  • In this paper, an Embedded solution for fast navigation and precise positioning of mobile robots by floor features is introduced. Most of navigation systems tend to require high-performance computing unit and high quality sensor data. They can produce high accuracy navigation systems but have limited application due to their high cost. The introduced navigation system is designed to be a low cost solution for a wide range of applications such as toys, mobile service robots and education. The key design idea of the system is a simple localization approach using line features of the floor and delayed localization strategy using topological map. It differs from typical navigation approaches which usually use Simultaneous Localization and Mapping (SLAM) technique with high latency localization. This navigation system is implemented on single board Raspberry Pi B+ computer which has 1.4 GHz processor and Redone mobile robot which has maximum speed of 1.1 m/s.

Sound Source Localization Method Applied to Robot System (로봇 시스템에 적용될 음원 위치 추정 방법)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.28-32
    • /
    • 2007
  • While various methods for sound source localization have been developed, most of them utilize on the time difference of arrival (TDOA) between microphones or the measured head related transfer functions (HRTF). In case of a real robot implementation, the former has a merit of light computation load to estimate the sound direction but can not consider the effect of platform on TDOAs, while the latter can, because characteristics of robot platform are included in HRTF. However, the latter needs large resources for the HRTF database of a specific robot platform. We propose the compensation method which has the light computation load while the effect of platform on TDOA can be taken into account. The proposed method is used with spherical head related transfer function (SHRTF) on the assumption that robot platform, for example a robot head, installed microphones can be modeled to a sphere. We verify that the proposed method decreases the estimation error caused by the robot platform through the simulation and experiment in real environment.

  • PDF

Map-Building and Position Estimation based on Multi-Sensor Fusion for Mobile Robot Navigation in an Unknown Environment (이동로봇의 자율주행을 위한 다중센서융합기반의 지도작성 및 위치추정)

  • Jin, Tae-Seok;Lee, Min-Jung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.434-443
    • /
    • 2007
  • Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.