• Title/Summary/Keyword: Robot guide

Search Result 186, Processing Time 0.036 seconds

Intelligent Maneuvering Decision System of Mobile Vehicle using Wearable Computing (웨어러블 컴퓨팅에 의한 지능형 주행 판단 시스템)

  • 정성호;김성주;김용택;서재용;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1561-1564
    • /
    • 2003
  • Intelligent Wearable Module is intelligent system that arises when a human is part of the feedback loop of a computational process like a certain control system. Applied system is mobile robot. This paper represents the mobile robot control system remote controlled by Intelligent Wearable Module. So far, owing to the development of 802.l1b technologies, lots of remote control methods through internet have been proposed. To control a mobile robot through internet and guide it under unknown environment. The information about the direction and velocity of the mobile robot feedbacks to the PDA and the PDA send new control method produced from the combination of Neuro and Hierarchical Fuzzy Algorithm

  • PDF

Estimation of Walking Habit in iSpace

  • Szemes, Peter T.;Hashimoto, Hideki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.531-534
    • /
    • 2003
  • In this paper, the Intelligent Space (iSpace) concept is applied for helping disabled or blind persons in crowded environments such as train stations, or airports. The main contribution of this paper is a general mathematical (fuzzy-neuro) description of obstacle avoidance method (walking habit) of moving objects (human beings) in a limited area scanned by the iSpace. A mobile robot with extended functions is introduced as a Mobile Assistant Robot which is assisted by the iSpace. The Mobile Assistant Robot (MAR) can guide and protect a blind person in a crowded environment with the help of the Intelligent Space. The prototype of the Mobile Assistant Robot and simulations of some basic types of obstacle avoidance method (walking habit) are presented.

  • PDF

Development of Robot System for Automatic Cleaning and Inspection of Live-line Suspension Insulator Strings and Its Application (활선 현수애자련 자동 청소 및 점검용 로봇시스템의 개발과 적용)

  • Park, Joon-Young;Cho, Byung-Hak;Byun, Seung-Hyun;Lee, Jae-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.66-75
    • /
    • 2007
  • To prevent an insulator failure, an automatic cleaning and inspection robot was developed for suspension insulator strings. The robot autonomously moves along the insulator string using the clamps installed on its two moving frames. Especially, unlike the existing cleaning robots using jets of water, the robot system adopts a dry cleaning method using rotating brushes and a circular motion guide. In addition, a mechanized brush bristles and a voltage-balancing contactor are devised to increase cleaning efficiency and to prevent arc generation under live-line conditions, respectively. We confirmed its effectiveness through experiments.

Analysis of Performance Requirements of a Wall-cleaning Robot (초고층 외벽 청소로봇의 성능조건 분석)

  • Kim, Chang-Han;Han, Jae-Goo;Kim, Kyoon-Tai
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.89-90
    • /
    • 2011
  • External wall cleaning is a task that is currently being performed by human workers. The recent surge in the number of high-rise buildings has led to such problems as difficulties in cleaning the wall, high risk to the specialized workers, and increased maintenance expenses. As a fundamental measure to perform external wall cleaning work in a safer manner, automation/mechanization has been on the rise. This research aims to classify façade types and analyze the performance requirements of a wall-cleaning robot, as preliminary research to develop a wall-cleaning robot. The replacement of specialized workers with robots is expected to improve both safety for workers and quality of cleaning.

  • PDF

A Study on the Evaluation Methods for s Personal Robot from the Viewpoints of Language, Teaching, and Learning Ability (언어, 교시 및 학습능력 관점에서 본 퍼스널 로봇의 평가 기준 설정에 대한 연구)

  • Kim, Yong-Jun;Yi, Keon-Young;Kim, Jin-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2465-2467
    • /
    • 2004
  • In this paper we present the guideline to evaluate the easiness of using personal robots and their learning abilities based on the analysis of their built-in commands, user interfaces, and intelligences. Recently, we are breathing with robots that can be able to do lots of roles. cleaning, security, pets and education in real life. They can be classified as home robots, guide robots, service robots, robot pets, and so on. There are, however, no standards to evaluate their ability, so it is not easy to select an appropriate robot when a user wants to buy it. Thus, we present, as a guideline that can be a standard for the evaluation of the personal robots, the standards by means of analyzing existing personal robots and results of the recent research works. We will, also, describe how to apply the evaluation method th the personal robot.

  • PDF

On-line Modeling of Robot Assembly with Uncertainties (불확실한 환경에서의 조립 작업을 위한 온라인 모델링 방법)

  • 정성엽;황면중
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.878-886
    • /
    • 2004
  • Uncertainties are inevitable in robotic assembly in unstructured environment since it is difficult to construct fixtures to guide motions of robots. This paper proposes an augmented Petri net and an algorithm to adapt the assembly model on-line during actual assembly process. The augmented Petri net identifies events using force and position information simultaneously. Unmodeled contact states are identified and incorporated into the model on-line. The proposed method increases the level of intelligence of the robot system by enhancing the autonomy. The proposed method is evaluated by simulation and experiments with L-type peg-in-hole assembly using a two-arm robot system.

Developement and control of a sensor based quadruped walking robot

  • Bien, Zeungnam;Lee, Yun-Jung;Suh, Il-Hong;Lee, Ji-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1087-1092
    • /
    • 1990
  • This paper describes the development and control of a quadruped walking robot, named as KAISER-II. The control system with multiprocessor based hierachical structure is developed. In order to navigate autonomously on a rough terrain, an identification algorithm for robot's position is proposed using 3-D vision and guide-mark pattern Also, a simple attitude control algorithm is included using force sensors. Through experimental results, it is shown that the robot can not only walk statically on even terrain but also cross over or go through the artificially made obstacles such as stairs, horizontal bar and tunnel-typed one.

  • PDF

Teleoperation of an Autonomous Mobile Robot Based on H.263 and Internet (H.263과 인터넷을 이용한 자율 이동 로봇의 원격 운용)

  • Park, Bok-Man;Kang, Geun-Taek;Lee, Won-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.183-187
    • /
    • 2002
  • This paper proposes a remote control system that combines computer network and an autonomous mobile robot. We control remotely an autonomous mobile robot with vision via the internet to guide it under unknown environments in the real time. The main feature of this system is that local operators need a World Wide Web browser and a computer connected to the internet communication network and so they can command the robot in a remote location through our Home Page. This system offers an image compression method using motion H.263 concept which reduces large time delay that occurs in network during image transmission.

  • PDF

Validation of the Unplugged Robot Education System Capable of Computerless Coding Education

  • Song, Jeong-Beom;Lee, Tae-Wuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.6
    • /
    • pp.151-159
    • /
    • 2015
  • In traditional programing education, computers were used as the main tool. Consequently, it was problematic to provide education in an environment without computers or for learners without computer skills. To address this problem, this study developed and validated an unplugged robot education system capable of computerless programming education. The key feature of the proposed system is that programing can be done only by connecting programming blocks in symbols of a flow chart with built-in commands. Validation of the system was performed by a specialist group. Validity was very high with values of content validity ratio (CVR) over 0.7 in all evaluation criteria except "Ease of error debugging" and "Linkages to educational curriculum," whose CVR values were each 0.6. Future directions include improvement in the two areas that scored lower than the others did by, respectively, system improvement to support debugging in error conditions that may occur during the programming process, and development of user guide to support linkages to educational curriculum.

Hierarchical Behavior Control of Mobile Robot Based on Space & Time Sensor Fusion(STSF)

  • Han, Ho-Tack
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.314-320
    • /
    • 2006
  • Navigation in environments that are densely cluttered with obstacles is still a challenge for Autonomous Ground Vehicles (AGVs), especially when the configuration of obstacles is not known a priori. Reactive local navigation schemes that tightly couple the robot actions to the sensor information have proved to be effective in these environments, and because of the environmental uncertainties, STSF(Space and Time Sensor Fusion)-based fuzzy behavior systems have been proposed. Realization of autonomous behavior in mobile robots, using STSF control based on spatial data fusion, requires formulation of rules which are collectively responsible for necessary levels of intelligence. This collection of rules can be conveniently decomposed and efficiently implemented as a hierarchy of fuzzy-behaviors. This paper describes how this can be done using a behavior-based architecture. The approach is motivated by ethological models which suggest hierarchical organizations of behavior. Experimental results show that the proposed method can smoothly and effectively guide a robot through cluttered environments such as dense forests.