• 제목/요약/키워드: Robot frame

검색결과 166건 처리시간 0.026초

Statistical Speech Feature Selection for Emotion Recognition

  • Kwon Oh-Wook;Chan Kwokleung;Lee Te-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • 제24권4E호
    • /
    • pp.144-151
    • /
    • 2005
  • We evaluate the performance of emotion recognition via speech signals when a plain speaker talks to an entertainment robot. For each frame of a speech utterance, we extract the frame-based features: pitch, energy, formant, band energies, mel frequency cepstral coefficients (MFCCs), and velocity/acceleration of pitch and MFCCs. For discriminative classifiers, a fixed-length utterance-based feature vector is computed from the statistics of the frame-based features. Using a speaker-independent database, we evaluate the performance of two promising classifiers: support vector machine (SVM) and hidden Markov model (HMM). For angry/bored/happy/neutral/sad emotion classification, the SVM and HMM classifiers yield $42.3\%\;and\;40.8\%$ accuracy, respectively. We show that the accuracy is significant compared to the performance by foreign human listeners.

3D Modeling and Balancing Control of Two-link Underactuated Robots using Matlab/Simulink

  • Yoo, Dong Sang
    • Journal of information and communication convergence engineering
    • /
    • 제17권4호
    • /
    • pp.255-260
    • /
    • 2019
  • A pendubot is a representative example of an underactuated system that has fewer actuators than the degree of freedom of the system. In this study, the characteristics of the pendubot are first reviewed; each part is then designed using Solidworks by dividing the pendubot into three parts: the base frame, first link frame, and second link frame. These three parts are then imported into the Simulink environment via a STEP file format, which is the standard protocol used in data exchange between CAD applications. A 3D model of the pendubot is then constructed using Simscape, and the usefulness of the 3D model is validated by a comparison with a dynamic equation derived using the Lagrangian formulation. A linearized model around an upright equilibrium position is finally obtained, and a sliding mode controller is designed based on the linear quadratic regulator. Simulation results showed that the designed controller effectively maintained upright balance of the pendubot in the presence of disturbance.

심해용 무인잠수정 구조의 민감도해석에 의한 최적설계 (Optimal Design of the Deep-sea Unmanned Vehicle Frame Design Sensitivity)

  • 이재환;허유정;정태환;이종무
    • 대한조선학회논문집
    • /
    • 제41권3호
    • /
    • pp.28-34
    • /
    • 2004
  • This paper presents the results of the structural analysis and optimal design of the ROV to be operated at 6000m depth in the ocean. This will be the first domestic deep-sea ROV operating with an AUV and a launcher equipped with robot arms and the current weight is about 3 ton. initial optimal dimension of the frame is determined based on the stress analysis using FEA code ANSYS and design sensitivity and optimization results. The current design is the initial design and there is a possibility to change the design according to the modification of material, equipments and array of structure.

갠트리 로봇의 고속/고정밀 이송을 위한 모션분석 및 앞섬필터 설계 (A Study on the Motion Analysis and Lead-Filter Design for High Speed/Accuracy Movement of Gantry Robot)

  • 김진대;조지승;이혁진;신찬배;박철휴
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.31-37
    • /
    • 2011
  • Recently gantry-type robot with 3 axes rectangular coordinates have been studied in the many industrial production equipment and machinery fields. To acquire a good handling and motion performance of this robot, reducing the settling-time and securing the accurate-transfer positioning under high-speed conditions should be required. However when robot is moved in high-speed, the large inertia of robot can lead to serious vibration of robot's head. The time-delayed control characteristics of this robot can also lead to tracking error. In this research, the analysis of the effects of higher order positional-profile is carried out to assure high-speed performance and stiffness specifications. To remove the residual vibration caused by kinematic coupling effect of dual-servo gantry, we develop a dual-servo gantry of rotary type that moving frame of x-axis rotates about z-axis. In order to decrease the tracking error, the 3 type lead-filter through system identification was applied respectively. From the experimental results, it was shown that zero-order series leader-filter has the best performance about tracking error and settling time.

Efficient Tracking of a Moving Object using Optimal Representative Blocks

  • Kim, Wan-Cheol;Hwang, Cheol-Ho;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.495-502
    • /
    • 2003
  • This paper focuses on the implementation of an efficient tracking method of a moving object using optimal representative blocks by way of a pan-tilt camera. The key idea is derived from the fact that when the image size of a moving object is shrunk in an image frame according to the distance between the mobile robot camera and the object in motion, the tracking performance of a moving object can be improved by reducing the size of representative blocks according to the object image size. Motion estimations using Edge Detection (ED) and Block-Matching Algorithm (BMA) are regularly employed to track objects by vision sensors. However, these methods often neglect the real-time vision data since these schemes suffer from heavy computational load. In this paper, a representative block able to significantly reduce the amount of data to be computed, is defined and optimized by changing the size of representative blocks according to the size of the object in the image frame in order to improve tracking performance. The proposed algorithm is verified experimentally by using a two degree-of- freedom active camera mounted on a mobile robot.

인간로봇 상호작용을 위한 잡음환경에 강인한 음성 끝점 검출 기법 (Robust Speech Endpoint Detection in Noisy Environments for HRI (Human-Robot Interface))

  • 박진수;고한석
    • 한국음향학회지
    • /
    • 제32권2호
    • /
    • pp.147-156
    • /
    • 2013
  • 본 논문에서는 이동하는 로봇에 탑재한 대화체 음성인식기의 주위 잡음 환경에 강인한 새로운 음성 끝점 검출 기법을 제안한다. 기존의 기법은 특징 값의 갑작스러운 변화점을 찾기 위해 에지 검출 필터(edge detection filter)를 적용하여 끝점을 찾았다. 하지만 프레임 에너지의 특징은 잡음 환경에서 불안정하기 때문에 음성의 끝점을 정확하게 찾기 어렵다. 그러므로 두 번의 고속 퓨리에 변환과 통계적 모델 기반의 특징 추출 기법을 제안하여 에지 검출 필터에 적용한다. 제안한 기법이 기존의 기법보다 강인한 특징이 될 수 있음을 본 실험을 통하여 확인하였다.

도장공정의 로보틱자동화를 위한 설계 지원 CAD/CAM 시스템 (A CAD/CAM system for designing robotic painting line)

  • 서석환;조정훈;강대호;전치혁;박춘열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1129-1135
    • /
    • 1993
  • For successful implementation of robotic painting system, a structured design and analysis procedure is necessary. In designing robotic system, both functional and economical feasibility should be investigated. As the robotization is complicated task involving implementation details(such as robot selection, accessory design, and spatial layout) together with operation details, a computerized method should be sought. However, any conventional robotic design system and off-line programming system cannot accomodate such a need. In this research, we develop an interactive design support system for robotization of a cycle painting line. With the developed system called SPRPL(Simulation Package for Robotic Painting Line) users can design the painting objects(via FRAME module), select robot model (ROBOT), design the part hanger (FEEDER), and arrange the workcell. After motion programming (MOTION), the design is evaluated in terms of: a) workspace analysis, b) coating thickness analysis, and c) cycle time (ANALYSIS). By iterative design and evaluation procedure, a feasible and efficient robotic design can be attained. As the developed system has motion planning and analysis features, it can be also used as an off-line robot programming system in operation stage. Including the details of each module, this paper also presents a case study made for an actual painting line.

  • PDF

최적화 기법을 이용한 로봇핸드 트래킹 모델의 파라미터 추정 (Parameter Identification of Robot Hand Tracking Model Using Optimization)

  • 이종광;이효직;윤광호;박병석;윤지섭
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.467-473
    • /
    • 2007
  • In this paper, we present a position-based robot hand tracking scheme where a pan-tilt camera is controlled such that a robot hand is always shown in the center of an image frame. We calculate the rotation angles of a pan-tilt camera by transforming the coordinate systems. In order to identify the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. From the simulation results, it is shown that the considered parameter identification problem is characterized by a highly multimodal landscape; thus, a global optimization technique such as a particle swarm optimization could be a promising tool to identify the model parameters of a robot hand tracking system, whereas the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum.

Backstepping-Based Control of a Strapdown Boatboard Camera Stabilizer

  • Setoodeh, Peyman;Khayatian, Alireza;Farjah, Ebrahim
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.15-23
    • /
    • 2007
  • In surveillance, monitoring, and target tracking operations, high-resolution images should be obtained even if the target is in a far distance. Frequent movements of vehicles such as boats degrade the image quality of onboard camera systems. Therefore, stabilizer mechanisms are required to stabilize the line of sight of boatboard camera systems against boat movements. This paper addresses design and implementation of a strapdown boatboard camera stabilizer. A two degree of freedom(DOF)(pan/tilt) robot performs the stabilization task. The main problem is divided into two subproblems dealing with attitude estimation and attitude control. It is assumed that exact estimate of the boat movement is available from an attitude estimation system. Estimates obtained in this way are carefully transformed to robot coordinate frame to provide desired trajectories, which should be tracked by the robot to compensate for the boat movements. Such a practical robotic system includes actuators with fast dynamics(electrical dynamics) and has more degrees of freedom than control inputs. Backstepping method is employed to deal with this problem by extending the control effectiveness.

모듈화 개념의 퍼스널 로봇 플랫폼 개발 (Development of a Personal Robot Based on Modularization)

  • 최무성;양광웅;원대희;박상덕;김홍석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.742-745
    • /
    • 2004
  • If a personal robot is popularized like a personal computer in the future, many kinds of robots will appear and the number of manufacturers will increase as a matter of course. In such circumstances, it can be inefficient, in case each manufacturer makes a whole platform individually. The solutions for this problem are to modularize a robot component (hardware and software) functionally and to standardize each module. Each module is developed and sold by each special maker and a consumer purchases desired modules and integrates them. The standardization of a module includes the unification of electrical and mechanical interface. In this paper, the standard interfaces of modules are proposed and CMR(Component Modularized Robot)-P2 made with the modules(brain, sensor, mobile, arm) is introduced. In order to simplify and to make the modules light, a frame is used for supporting a robot and communication/power lines. The name of a method and the way to use that are defined dependently on the standard interfaces in order to use a module in other modules. Each module consists of a distributed object and that can be implemented in the random language and platform. The sensor, mobile and arm modules are developed on Pentium or ARM CPU and embedded Linux OS using the C programming language. The brain module is developed on Pentium CPU and Windows OS using the C, C++ and RPL(Robot Programming Language). Also tasks like pass planning, localization, moving, object perception and face perception are developed. In our test, modules got into gear and CMR-P2 executed various scenarios like guidance, errand and guarding completely.

  • PDF