• Title/Summary/Keyword: Robot and automation

Search Result 613, Processing Time 0.027 seconds

Sliding Mode Control for a High-Load Wheeled Mobile Robot (중하중을 받는 이동로붓의 슬라이딩모드 제어)

  • 홍대희;정재훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.145-153
    • /
    • 2000
  • This paper discusses the dynamic modeling and robust control development for a differentially steered mobile robot subject to wheel slip according to high load. Consideration of wheel slip is crucial for high load applications such as construction automation tasks because wheel slip acts as a severe disturbance to the system. It is shown that the uncertainty terms due to the wheel slip satisfy the matching condition for the sliding mode control design. From the full dynamic model of the mobile robot, a reduced ideal model is extracted to facilitate the control design. The sliding mode control method ensures the dynamic tracking performance for such a mobile robot. Numerical simulation shows the promise of the developed algorithm.

  • PDF

Integrated Operating System For Welding Automation on Assembly Line At Shipyards (대조립 블럭 용접 자동화를 위한 통합 운영 시스템)

  • Kim, Byung-Su;Rhee, Si-Youl;Kim, Eun-Jung;Park, Jin-Hyung;Park, Young-Jun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1752-1756
    • /
    • 2003
  • Welding automation in shipbuilding process, especially in the assembly line is considered to be a difficult job because welding part is too huge , various and unstructured for a welding robot to weld the whole part automatically. We developed an automatic welding robot to improve those difficult process. This paper show how to systematically operate the integrated automation system which consists of several robots. We introduce our software and system integration method. Specially we focus that network communication and operating process. The developed system visualizes the operation environment using Open Inventor and communicates with the entire system via TCP/IP and FTP.

  • PDF

A Study on Inspection Reliability Evaluation of Electric Rice Cooker FCT Inspection Automation System (전기밥솥 FCT 검사 자동화 System의 검사 신뢰성 평가에 관한 연구)

  • Jeong, Hae-Jin;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.30-35
    • /
    • 2022
  • This study has focused on the reliability evaluation of FCT inspection automation equipment for electric rice. To evaluate the reliability of FCT inspection automation equipment, voice analysis, Gray/R/G/B channel experiment, FND segment experiment, and robot position repeatability were performed. In the voice analysis experiment, the comparison value between the recorded and digital output waves was over 99%, indicating a very high result. It was confirmed that both the gray/R/G/B experiment using vision and the FND segment could confirm the output value of the product through vision. The position repeatability of the robot is also excellent, so it is concluded that the inspection effect through the FCT automation system will be excellent.

Development of the Resource Investigation Emulating Cable Car Type Robot System (자원탐사의 최적화 및 자동화를 위한 케이블카형 로봇 시스템의 개발)

  • Yu, Son-Cheol;Pyo, Ju-Hyun;Jung, Hyun-Key;Yoon, Joong-Sun;Lee, Jung-Ik;Cho, Sung-Ho;Kim, Tae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.38-44
    • /
    • 2011
  • Recently, the resource investigation has got much attention. The optimization of the resource investigation method and its automation are one of the most important keys for it. We propose the resource investigation emulating robot to overcome the conventional method; a numerical modeling. A nobel cable car robot system is developed. It minimizes the magnetic noise and comes true the gradient emulating of the field. This advanced system enables the optimization and automation of the resource investigation.

Fuzzy Logic Controller for a Mobile Robot Navigation (퍼지제어기를 이용한 무인차 항법제어)

  • Chung, Hak-Young;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.713-716
    • /
    • 1991
  • This paper describes a methodology of mobile robot navigation which is designed to carry heavy payloads at high speeds to be used in FMS(Flexible Manufacturing System) without human control. Intelligent control scheme using fuzzy logic is applied to the navigation control. It analyzes sensor readings from multi-sensor system, which is composed of ultrasonic sensors, infrared sensors and odometer, for environment learning, planning, landmark detecting and system control. And it is implemented on a physical robot, AGV(Autonomous Guided Vehicle) which is a two-wheeled, indoor robot. An on-board control software is composed of two subsystems, i.e., AGV control subsystem and Sensor control subsystem. The results show that the navigation of the AGV is robust and flexible, and a real-time control is possible.

  • PDF

Gait Implementation of Biped Walking Robot(IWR-III) for continuous trunk motion (이족보행로봇(IWR-III)의 지속적인 몸체 추진을 위한 걸음새 구현)

  • Jang, Chung-Ryoul;Choi, Young-Ha;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.549-551
    • /
    • 1998
  • This paper deals with the new gait implementation of biped walking robot(IWR-III). In the case of using old gait. The trunk should be stopped during the phase changing time. But using new gait, the trunk moves continuously for all walking time. As a result, IWR-III has a walking gait similar to human being, and the motion of balancing joints can be reduced by the trunk ahead effect in the double support phase, moreover, ZMP tracking is improved, therefore the stability of IWR-III is improved. The trajectory is planned with a 5th order spline interpolation and stability of IWR-III is certified with a biped simulator.

  • PDF

Autonomous Sensor Center Position Calibration with Linear Laser-Vision Sensor

  • Jeong, Jeong-Woo;Kang, Hee-Jun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • A linear laser-vision sensor called ‘Perception TriCam Contour' is mounted on an industrial robot and often used for various application of the robot such as the position correction and the inspection of a part. In this paper, a sensor center position calibration is presented for the most accurate use of the robot-Perceptron system. The obtained algorithm is suitable for on-site calibration in an industrial application environment. The calibration algorithm requires the joint sensor readings, and the Perceptron sensor measurements on a specially devised jig which is essential for this calibration process. The algorithm is implemented on the Hyundai 7602 AP robot, and Perceptron's measurement accuracy is increased up to less than 1.4mm.

The Development of Small-sized Launchable Robot for Reconnaissance (발사형 소형정찰 로봇 개발)

  • Lee, Seung-Ho;Jung, Won-Suk;Lee, Min-Gu;Park, Ji-Hyuk;Park, Hyun-Soo;Yoo, Kyu-Jae;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.535-542
    • /
    • 2012
  • Recently, the study on small-sized reconnaissance robot has been progressed through grafting robot technology to military fields for minimizing the casualties. Especially, throwable robots have been focusing for their's efficiency in anti-terror operation. However, it is impossible to launch throwable robot to long range(approximately 100m) by hand. So we need another type of robots, so called launchable robots, which can launch farther and is more accurate by launcher. In this paper, we presented the process of developments of launchable robots('launchbot') which are available for remote launch from collection of user's opinions to field test. Based on the opinions of users, we established the goal of development, designed and manufactured the robots. Through the field test, we found that our launchable robot satisfied the performance requirements.

A practical identification method for robot system dynamic parameters

  • Kim, Sung-wun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.705-710
    • /
    • 1989
  • A practical method of identifying the inertial parameters, viscous friction and Coulomb friction of a robot is presented. The parameters in the dynamic equations of a robot are obtained from the measurements of the command voltage and the joint position of the robot. First, a dynamic model of the integrated motor and manipulator is derived. An off line parameter identification procedure is developed and applied to the University of Minnesota Direct Drive Robot. To evaluate the accuracy of the parameters the dynamic tracking of robot was tested. The trajectory errors were significantly reduced when the identified dynamic parameters were used.

  • PDF

Automation of roadway sign painting using a gantry-type robot (갠트리 로봇을 이용한 노면사인 도색작업 자동화)

  • Yoo, Ji-Hoon;Lee, Woo-Chang;Shin, Hyoun-Ho;Choi, Woo-Chun;Hong, Dae-Hie;Lee, Sang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1518-1523
    • /
    • 2003
  • Automation of roadway sign painting offers more safety for workers, shortening of work period, etc., compared with manual painting. In this study, an automated system using a gantry-type robot was developed for roadway sign painting which has been done manually. Any characters (Korean and English) as well as symbols can be painted by the system. A simulator was also developed, which can show the painted results in advance. The developed system performed well, and the signs painted by the system were found to be as accurate as those made by the simulator.

  • PDF