• Title/Summary/Keyword: Robot agent

Search Result 149, Processing Time 0.029 seconds

Swarm Control of Distributed Autonomous Robot System based on Artificial Immune System using PSO (PSO를 이용한 인공면역계 기반 자율분산로봇시스템의 군 제어)

  • Kim, Jun-Yeup;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.465-470
    • /
    • 2012
  • This paper proposes a distributed autonomous control method of swarm robot behavior strategy based on artificial immune system and an optimization strategy for artificial immune system. The behavior strategies of swarm robot in the system are depend on the task distribution in environment and we have to consider the dynamics of the system environment. In this paper, the behavior strategies divided into dispersion and aggregation. For applying to artificial immune system, an individual of swarm is regarded as a B-cell, each task distribution in environment as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows: When the environmental condition changes, the agent selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other agent using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. In order to decide more accurately select the behavior strategy, the optimized parameter learning procedure that is represented by stimulus function of antigen to antibody in artificial immune system is required. In this paper, particle swarm optimization algorithm is applied to this learning procedure. The proposed method shows more adaptive and robustness results than the existing system at the viewpoint that the swarm robots learning and adaptation degree associated with the changing of tasks.

Integrated Navigation of the Mobile Service Robot in Office Environments

  • Chung, Woo-Jin;Kim, Gun-Hee;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2033-2038
    • /
    • 2003
  • This paper describes an integrated navigation strategy for the autonomous service robot PSR. The PSR is under development at the KIST for service tasks in indoor public environments. The PSR is a multi-functional mobile-manipulator typed agent, which works in daily life. Major advantages of proposed navigation are as follows: 1) Structured control architecture for a systematic integration of various software modules. A Petri net based configuration design enables stable control flow of a robot. 2) A range sensor based generalized scheme of navigation. Any range sensor can be selectively applied using the proposed navigation scheme. 3) No need for modification of environments. (No use of artificial landmarks.) 4) Hybrid approaches combining reactive behavior as well as deliberative planner, and local grid maps as well as global topological maps. A presented experimental result shows that the proposed navigation scheme is useful for mobile service robot in practical applications.

  • PDF

A Ubiquitous Interface System for Mobile Robot Control in Indoor Environment (실내 환경에서의 이동로봇 제어를 위한 유비쿼터스 인터페이스 시스템)

  • Ahn Hyunsik;Song Jae-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.66-71
    • /
    • 2006
  • Recently, there are lots of concerning on ubiquitous environment of robots and URC (Ubiquitous Robotic Companion). In this paper, a practical ubiquitous interface system far controlling mobile robots in indoor environments was proposed. The interface system was designed as a manager-agent model including a PC manager, a mobile manager, and robot agents for being able to be accessed by any network. In the system, the PC manager has a 3D virtual environment and shows real images for a human-friendly interface, and share the computation load of the robot such as path planning and managing geographical information. It also contains Hybrid Format Manager(HFM) working for transforming the image, position, and control data and interchanging them between the robots and the managers. Mobile manager working in the minimized computing condition of handsets has a mobile interface environment displaying the real images and the position of the robot and being able to control the robots by pressing keys. Experimental results showed the proposed system was able to control robots rising wired and wireless LAN and mobile Internet.

An Adaptive Goal-Based Model for Autonomous Multi-Robot Using HARMS and NuSMV

  • Kim, Yongho;Jung, Jin-Woo;Gallagher, John C.;Matson, Eric T.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • In a dynamic environment autonomous robots often encounter unexpected situations that the robots have to deal with in order to continue proceeding their mission. We propose an adaptive goal-based model that allows cyber-physical systems (CPS) to update their environmental model and helps them analyze for attainment of their goals from current state using the updated environmental model and its capabilities. Information exchange approach utilizes Human-Agent-Robot-Machine-Sensor (HARMS) model to exchange messages between CPS. Model validation method uses NuSMV, which is one of Model Checking tools, to check whether the system can continue its mission toward the goal in the given environment. We explain a practical set up of the model in a situation in which homogeneous robots that has the same capability work in the same environment.

Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots (다중 에이전트 모바일 로봇 대형제어를 위한 유한시간 슬라이딩 모드 제어기 설계)

  • Park, Dong-Ju;Moon, Jeong-Whan;Han, Seong-Ik
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • In this paper, we present a finite-time sliding mode control (FSMC) with an integral finite-time sliding surface for applying the concept of graph theory to a distributed wheeled mobile robot (WMR) system. The kinematic and dynamic property of the WMR system are considered simultaneously to design a finite-time sliding mode controller. Next, consensus and formation control laws for distributed WMR systems are derived by using the graph theory. The kinematic and dynamic controllers are applied simultaneously to compensate the dynamic effect of the WMR system. Compared to the conventional sliding mode control (SMC), fast convergence is assured and the finite-time performance index is derived using extended Lyapunov function with adaptive law to describe the uncertainty. Numerical simulation results of formation control for WMR systems shows the efficacy of the proposed controller.

Transformer-Based MUM-T Situation Awareness: Agent Status Prediction (트랜스포머 기반 MUM-T 상황인식 기술: 에이전트 상태 예측)

  • Jaeuk Baek;Sungwoo Jun;Kwang-Yong Kim;Chang-Eun Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.436-443
    • /
    • 2023
  • With the advancement of robot intelligence, the concept of man and unmanned teaming (MUM-T) has garnered considerable attention in military research. In this paper, we present a transformer-based architecture for predicting the health status of agents, with the help of multi-head attention mechanism to effectively capture the dynamic interaction between friendly and enemy forces. To this end, we first introduce a framework for generating a dataset of battlefield situations. These situations are simulated on a virtual simulator, allowing for a wide range of scenarios without any restrictions on the number of agents, their missions, or their actions. Then, we define the crucial elements for identifying the battlefield, with a specific emphasis on agents' status. The battlefield data is fed into the transformer architecture, with classification headers on top of the transformer encoding layers to categorize health status of agent. We conduct ablation tests to assess the significance of various factors in determining agents' health status in battlefield scenarios. We conduct 3-Fold corss validation and the experimental results demonstrate that our model achieves a prediction accuracy of over 98%. In addition, the performance of our model are compared with that of other models such as convolutional neural network (CNN) and multi layer perceptron (MLP), and the results establish the superiority of our model.

A Navigation System for Mobile Robot

  • Zhang, Yuanliang;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.118-120
    • /
    • 2009
  • In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of multi-agent technology. The structure is composed of sixphase agents and one intersection agent. Wireless communication network provides the possibility of the cooperation of agents. As one kind of reinforcement learning, Q-learning is adopted as the algorithm of the control mechanism, which can acquire optical control strategies from delayed reward; furthermore, we adopt dynamic learning method instead of static method, which is more practical. Simulation result indicates that it is more effective than traditional signal system.

  • PDF

A Study on the Implementation and Practical Application of Web Monitoring System (웹 모니터링 시스템 구현 및 활용 방안 연구: 쇼핑몰 이용고객에 대한 응답소요시간 평가를 중심으로)

  • Park, Chul-Jae;Cho, Jae-Gyeun
    • The Journal of Information Systems
    • /
    • v.16 no.2
    • /
    • pp.35-49
    • /
    • 2007
  • The web monitoring is a procedure to detect and monitor the change of a particular information from the web site. In this paper, we propose a monitoring system to survey the response time for the customers chi an internet shopping mall. This system we designed, decreases the network overload and guarantees the accuracy as well as the reliability of the information by using an interactive agent. This interactive agent we constructed, is written in Java and controlled by the high-level information such as the index or the robot. from the N web site, we extracted the web monitoring results of keyword "LCD Monitor" and verified our system's efficiency. The performance of the system is tested and the result is illustrated.

  • PDF

Particle Filter Localization Using Noisy Models (잡음 모델을 이용한 파티클 필터 측위)

  • Kim, In-Cheol;Kim, Seung-Yeon;Kim, Hye-Suk
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.27-30
    • /
    • 2012
  • One of the most fundamental functions required for an intelligent agent is to estimate its current position based upon uncertain sensor data. In this paper, we explain the implementation of a robot localization system using Particle filters, which are the most effective one of the probabilistic localization methods, and then present the result of experiments for evaluating the performance of our system. Through conducting experiments to compare the effect of the noise-free model with that of the noisy state transition model considering inherent errors of robot actions, we show that it can help improve the performance of the Particle filter localization to apply a state transition model closely approximating the uncertainty of real robot actions.

Obstacle Avoidance Method for Multi-Agent Robots Using IR Sensor and Image Information (IR 센서와 영상정보를 이용한 다 개체 로봇의 장애물 회피 방법)

  • Jeon, Byung-Seung;Lee, Do-Young;Choi, In-Hwan;Mo, Young-Hak;Park, Jung-Min;Lim, Myo-Taeg
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1122-1131
    • /
    • 2012
  • This paper presents obstacle avoidance method for scout robot or industrial robot in unknown environment by using IR sensor and vision system. In the proposed method, robots share the information where the obstacles are located in real-time, thus the robots can choose the best path for obstacle avoidance. Using IR sensor and vision system, multiple robots efficiently evade the obstacles by the proposed cooperation method. No landmark is used at wall or floor in experiment environment. The obstacles don't have specific color or shape. To get the information of the obstacle, vision system extracts the obstacle coordinate by using an image labeling method. The information obtained by IR sensor is about the obstacle range and the locomotion direction to decide the optimal path for avoiding obstacle. The experiment was conducted in $7m{\times}7m$ indoor environment with two-wheeled mobile robots. It is shown that multiple robots efficiently move along the optimal path in cooperation with each other in the space where obstacles are located.