• Title/Summary/Keyword: Robot Velocity Control

Search Result 428, Processing Time 0.033 seconds

A study on deburring task of robot arm using neural network (신경망을 이용한 ROBOT ARM의 디버링(Deburring) 작업에 관한 연구)

  • 주진화;이경문;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.139-142
    • /
    • 1996
  • This paper presents a method of controlling contact force for deburring tasks. The cope with the nonlinearities and time-varying properties of the robot and the environment, a neural network control theory is applied to design the contact force control system. We show that the contact force between the hand and the contacting surface can be controlled by adjusting the command velocity of a robot hand, which is accomplished by the modeling of a robot and the environment as Mass-Spring-Damper system. Simulation results are shown.

  • PDF

Estimate the Inclination Angle using Traveling Speed of Segway Robot on the Slope (경사로에서 세그웨이 로봇의 주행 속도를 통한 경사각 추정)

  • Jeong, Hee-In;Lee, Sang-Yong;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1164-1169
    • /
    • 2014
  • This paper proposes an angle estimation of Segway robot for the slop driving. Most of Segway robot was controlled by pose control of keeping robot's balance and motor control of driving. In motor control, we analyzed Segway robot kinetically and estimated an angle of inclination using the velocity that depends on input force. In pose control, also, we used PD controller and evaluated a stability of controller through MATLAB simulation. Assuming the robot keeps its balance stably using controller, we could linearize dynamics. We could obtain the result through the experiment which estimates an angle using the velocity of Segway robot that is derived from linearized dynamics.

Vibration Suppression Control for an Articulated Robot: Effects of Model-Based Control Applied to a Waist Axis

  • Itoh, Masahiko;Yoshikawa, Hiroshi
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.263-270
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a waist axis of an articulated robot. This technique is based on a model-based control in order to establish the damping effect on the mechanical part. The control model is related to the velocity control loop, and it is composed of reduced-order electrical and mechanical parts. Using this model, the velocity of the load is estimated, which is converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically, and it is added to the velocity command to suppress the transient vibration of a waist axis of the robot arm. The function of this technique is to increase the cut-off frequency of the system and the damping ratio at the driven machine part. This control model is easily obtained from design or experimental data and its algorithm can be easily installed in a DSP. This control technique is applied to a waist axis of an articulated robot composed of a harmonic drive gear reducer and a robot arm with 5 degrees of freedom. Simulations and experiments show satisfactory control results to reduce the transient vibration at the end-effector.

The Control of a Bipedal Robot using ANFIS (ANFIS를 이용한 이족보행로봇 제어)

  • Hwang, Jae-Pil;Kim, Eun-Tai;Park, Mignon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.523-525
    • /
    • 2004
  • Over the last few years, the control of bipedal robot has been considered a promising research field in the community of robotics. But the problems we encounter make the control of a bipedal robot a hard task. The complicated link connection of the bipedal robot makes it impossible to achieve its exact model. In addition, the joint velocity is needed to accomplish good control performance. In this paper a control method using ANFIS as an system approximator is purposed. First a model biped robot of a biped robot with switching leg influence is presented. Unlike classical method, ANFIS approximation error estimator is inserted in the system for tuning the ANFIS. In the entire system, only ANFIS is used to approximate the uncertain system. ANFIS tuning rule is given combining the observation error, control error and ANFIS approximation error. But this needs velocity information which is not available. So a practical method is newly presented. Finally, computer simulation results is presented to show this control method has good position tracking performance and robustness without need for leg switching acknowledgement.

  • PDF

Robot Manipulator Joint Velocity Control Using Image-based Visual Servoing (이미지 기반 시각 구동을 이용한 로봇 매니퓰레이터의 관절 속도 제어)

  • Lee, Young-Chan;Jie, Min-Seok;Lee, Kang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.134-137
    • /
    • 2002
  • This paper presents a robot manipulator kinematic motion control scheme based on velocity feedback loop. The desired joint velocity is obtained by the feature-based visual servoing and is used in the joint velocity control loop system for trajectory control of the robot manipulator. The asymptotic stability of the closed loop system is shown by the Lyapunov method. Effectiveness of the proposed method is shown by simulation and experimental results on a robot manipulator with two degree of freedom.

  • PDF

Kinematic Correction of n Differential Drive Mobile Robot and a Design for the Reference-Velocity Trajectory with Acceleration-Resolution Constraint on Motor Controllers (차동 구륜이동로봇의 기구학적 보정과 모터제어기의 가속도 해상도 제약을 고려한 기준속도궤적의 설계)

  • 문종우;김종수;박세승
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.498-505
    • /
    • 2002
  • Reducing odometer errors caused by kinematic imperfections in wheeled mobile robots is imestigated. Wheel diameters and wheelbase are corrected by using encoders without landmarks. A new velocity trajectory is proposed that compensates for an orientation error due to acceleration- resolution constraints on motor controllers. Based on this velocity trajectory, the wheel velocity of one out of two driven wheels may be changed by the traveled distance of the mobile robot. It is shown that a wheeled mobile robot can't move along a straight line exactly, even if kinematic correction are achieved perfectly, and this phenomenon is attributable to acceleration-resolution constraints on motor controllers. We experiment on a wheeled mobile robot with 2 d.o.f. are used in the experiment to verify the proposed scheme.

Optimal Optical Mouse Array for High Performance Mobile Robot Velocity Estimation (이동로봇 속도 추정 성능 향상을 위한 광 마우스의 최적 배열)

  • Kim, Sungbok;Kim, Hyunbin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.555-562
    • /
    • 2013
  • This paper presents the optimal array of optical mice for the accurate velocity estimation of a mobile robot. It is assumed that there can be some restriction on the installation of two or more optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is derived, which maps the velocity of a mobile robot to the velocities of optical mice. Second, taking into account the consistency in physical units, the uncertainty ellipsoid is obtained to represent the error characteristics of the mobile robot velocity estimation owing to noisy optical mouse measurements. Third, a simple but effective performance index is defined as the inverse of the volume of the uncertainty ellipsoid, which can be used for the optimization of the optimal optical mouse placement. Fourth, simulation results for the optimal placement of three optical mice within a given elliptical region are given.

Decentralized Control of Cooperative Mobile Robot Systems Using Passive Velocity Field Control Method (수동 속도장 제어법을 이용한 협조 이동로봇 시스템의 분산제어)

  • 서진호;이권순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.129-138
    • /
    • 2004
  • In this paper, we propose a method to apply a decentralized control algorithm for passive velocity field control using virtual flywheel system to cooperative 3-wheeled mobile robots, and these subsystem are under nonholonomic constraints. The considered robotic systems convey a common rigid object in a horizontal plain. Moreover we will proof the passivity and robustness for cooperative mobile robotic systems with decentralized passive velocity field control. Finally, The effectiveness of proposed control algorithm is examined by numerical simulation for cooperation tasks with 3-wheeled mobile robot systems.

Vibration Suppression Control for an Articulated Robot;Effects of Model-Based Control Integrated into the Position Control Loop

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2016-2021
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration with respect to a waist axis of an articulated robot. This control technique is based on a model-based control in order to establish the damping effect on the driven mechanical part. The control model is composed of reduced-order electrical and mechanical parts related to the velocity control loop. The parameters of the control model can be obtained from design data or experimental data. This model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically, and it is added to the velocity command to suppress the transient vibration. This control method is applied to an articulated robot regarded as a time-invariant system. The effectiveness of the model-based control integrated into the position control loop is verified by simulations. Simulations show satisfactory control results to reduce the transient vibration at the end-effector.

  • PDF

Stability Analysis of Decentralized PVFC Algorithm for Cooperative Mobile Robotic Systems

  • Suh, Jin-Ho;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1909-1914
    • /
    • 2004
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified behaviorally in terms of a velocity field, and the closed-loop was passive with respect to a supply rate given by the environment input. However the PVFC was only applied to a single manipulator, the proposed control law was derived geometrically, and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a method to apply a decentralized control algorithm to cooperative 3-wheeled mobile robots whose subsystem is under nonholonomic constraints and which convey a common rigid object in a horizontal plain. Moreover it is shown that multiple robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative mobile robot systems.

  • PDF