• Title/Summary/Keyword: Robot System Design

Search Result 1,198, Processing Time 0.03 seconds

THE SOLUTION OF HARDWARE OF ROBOT CONTROL SYSTEM (로봇 제어를 위한 시스템의 하드웨어 구성)

  • Bui-Quang, Duoc
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.474-479
    • /
    • 2004
  • This paper presents an economical solution of the control system of robot, which is widely applied to sophisticated robots. The proposed control system is built on a foundation that is combined between driver motor, PC controlled servo-motor control card, and driver software. The solution had been applied to design hardware of controlled 6-DOF (Degree Of Freedom) robot. The controlled system is used to control VML Robot (Vehicle Mechatronic Lab). Addition, because of flexibility of the solution, the controller can be suit with widely robots at used servo-moto.

  • PDF

A Study on Architecting Method of a Welding Robot Using Model-Based System Design Method (모델기반 시스템 설계 방법을 이용한 용접로봇의 상부아키텍쳐 정의에 관한 연구)

  • Park Young-Won;Kim Jin-Ill
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.152-159
    • /
    • 2005
  • This paper describes the application of a model-based system design method critical to complex intelligent systems, PSARE, to a welding robot development to define its top level architecture. The PSARE model consists of requirement model which describes the core processes(function) of the system, enhanced requirement model which adds technology specific processes to requirement model and allocates them to architecture model, and architecture model which describes the structure and interfaces and flows of the modules of the system. This paper focuses on the detailed procedure and method rather than the detailed domain model of the welding robot. In this study, only the top level architecture of a welding robot was defined using the PSARE method. However, the method can be repeatedly applied to the lower level architecture of the robot until the process which the robot should perform can be clearly defined. The enhanced data flow diagram in this model separates technology independent processes and technology specific processes. This approach will provide a useful base not only for improvement of a class of welding robots but also for development of increasingly complex intelligent real-time systems.

Development of Eire-lighting and Rescue Robot for Outdoor Environment using Target Oriented Design Methodology (목표지향설계 개념을 이용한 실외화재진압 및 인명구조 로봇의 개발)

  • Kim, Moon-June;Maolin, Jin;Lee, Jin-Oh;Chang, Pyung-Hun;Kim, Jong-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.86-92
    • /
    • 2007
  • This paper presents the development of fire-fighting and rescue robot for Outdoor Environment. In the procedure of this development, we follow Target Oriented Design (TOD) which is recognized as the systematic methodology to design a system by specifying the target clearly. For some real fire fighting tasks (e.g. tasks in shopping street and a market), narrow road make it difficult for existing fire engine to access the firing place. On the other hand, for dangerous tasks (e.g. gasoline station and a storehouse) the explosive materials make it impossible for fire-fighters to access the firing place. Moreover, the smoke and the high-temperature caused by fire make fire fighting difficult. In this situation, the solution is to develop the fire-fighting and rescue robot. TOD is performed firstly by analyzing the environment properties of fro place and the demanded tasks and the fire-fighting and rescue robot is manufactured. For safety, the fire fighting robot should be controlled by remote operation to keep the operator away from the fire, and the control system is divided into three parts: the robot controllers, controller for remote operating device and wireless communication system. We have selected and developed appropriate hardware and software for each part of control system with considering TOD. As a result, the fire-fighting robot functions correctly and the performance and usefulness of our control architecture is validated by successfully performing some fire-fighting tasks.

Remote Navigation System for Mobile Robot (이동 로봇의 원격 주행 시스템)

  • Kim, Jong-Seon;Yu, Yeong-Seon;Kim, Sung-Ho;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.325-327
    • /
    • 2007
  • In this paper, we implement the internet- based remote control system for intelligent robot. For remote control of the robot, it uses the socket communication of the TCP/IP. It consists of- the user interface and the robot control interface. Robot control interface transmits the navigation and environmental informations of the robot into the user interface. In order to transmit the large environmental images, a JPEG compression algorithm is used. User interface displays the navigation status of the robot and transmits the navigation order into the robot control interface. Also, we propose the design method of the fuzzy controller using navigation data acquired by expert's knowledge or experience. To do this, we use virus-evolutionary genetic algorithm(VEGA). Finally, we have shown the proposed system can be operated through the real world experimentations.

  • PDF

Design of Robot Using of Jansen Mechanism (얀센메커니즘을 이용한 로봇 설계)

  • Kim, beong jin;Kim, hyeon min;Lee, hyo jung
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.501-505
    • /
    • 2016
  • In this study, a robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism. Our goal is to finish the given path using given terms. The various programs was used to understand the mechanism in more detail. DISON m.Sketch, EDISON Designer, Theo Jansen Mechanism Optimization Solver. Using these programs, we can design the robot in more dtails and reduce errors and trials. For the design and implementation of a robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

  • PDF

Design of Fuzzy Logic System for Mobile Robot based on Visual Servoing

  • Song, Un-Ji;Yoo, Seog-Hwan;Choi, Byung-Jae
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.113-117
    • /
    • 2005
  • This paper describes a visual control scheme, fuzzy logic system for visual servoing of an autonomous mobile robot. An existing communication autonomous mobile robot always needs to keep the object in image to detect the moving object. This is a problem in an autonomous mobile robot for spontaneous activity. To solve it, some features for an object are taken from an image and then use in the design of fuzzy logic system for decision of moving location and direction of visual servoing contrivance(apparatus). So continuous tracking is possible by moving the visual servoing contrivance. We present some simulation results and further studies in the Section of Simulation and Concluding Remarks.

  • PDF

Design of an Intelligent Robot Control System Using Neural Network (신경회로망을 이용한 지능형 로봇 제어 시스템 설계)

  • 정동연;서운학;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.279-279
    • /
    • 2000
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts fur the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell fur automatic test and assembling in S company.

  • PDF

Development of Cleaning Module and Operating System of Underwater Robot for Ship Hull Cleaning (선저 청소용 수중로봇의 청소 모듈 및 제어 시스템 개발)

  • Choi, Hyeung-Sik;Kwon, Kyoung-Youb;Chung, Koo-Rack;Seo, Joo-No;Kang, Hyung-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.553-561
    • /
    • 2009
  • This paper presents development of ROV-type underwater robot capable of cleaning ship hull in automatic mode. The purpose of developing this robot is for underwater cleaning to secure the safety of divers who inspect and clean the ship hull. The robot consists of the cleaning system with rotating brush mechanism, a car-like driving mechanism, inspection system using video, and overall control system for underwater communication and operation. In this paper, we present overall design process of the cleaning system and operating system and technical contents of the overall control system for the underwater cleaning robot.

The design and development of high performance SCARA ROBOT (고성능 SCARA ROBOT 개발)

  • 이영우;안태영;권구빈;손신국;민정동
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.1-4
    • /
    • 1986
  • This paepr handles the illustrations about various characteristics of SCARA type ROBOT developed by Samsung Precision Ind. and includes system structure, controller, robot language and future developing plan. This robot has high-precision, high-speed and flexible movement performances. So it is very useful for small parts assembly systems.

  • PDF

Conceptual Design of Oil Spill Protection Robot (원유유출 방재로봇의 컨셉디자인)

  • Kim, Ji-Hoon;Kim, Myung-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.345-350
    • /
    • 2008
  • This study aims to propose the concept design of oil spill protection robot which can rapidly intervene to control the oil spillage situation at the sea. Taking into account the fact that a huge amount of oil is transported trans-continentally by oil tanker, none of industrialized countries are completely safe from the marine oil spill which results in social, economical and ecological damages to their communities. The employment of double hull-oil tanker, pipe line transporting can be most safe way. Yet complete prevention of oil spill is probably not realistic. Accordingly the alternative solution to control marine oil spill and minimize the damages caused by the incident using intelligent robot technology based on swarm control method is proposed. The main features of oil spill protection(OSP) robot is explained via following three perspectives. Firstly, from functional point of view, OSP robot system safely and efficiently replaces oil boom installation manually conducted by human workers with intelligent robot technology based on swarm control theory. For second, its modular architecture brings efficient storage of main components including oil boom and facilitates maintenance. For the last, its geometric form and shape enables whole system to be installed to helicopter, boat or oil tanker itself with ease and to rapidly deploy the units to the oil spill area.

  • PDF