• 제목/요약/키워드: Robot System Design

검색결과 1,198건 처리시간 0.029초

도장공정의 로보틱자동화를 위한 설계 지원 CAD/CAM 시스템 (A CAD/CAM system for designing robotic painting line)

  • 서석환;조정훈;강대호;전치혁;박춘열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1129-1135
    • /
    • 1993
  • For successful implementation of robotic painting system, a structured design and analysis procedure is necessary. In designing robotic system, both functional and economical feasibility should be investigated. As the robotization is complicated task involving implementation details(such as robot selection, accessory design, and spatial layout) together with operation details, a computerized method should be sought. However, any conventional robotic design system and off-line programming system cannot accomodate such a need. In this research, we develop an interactive design support system for robotization of a cycle painting line. With the developed system called SPRPL(Simulation Package for Robotic Painting Line) users can design the painting objects(via FRAME module), select robot model (ROBOT), design the part hanger (FEEDER), and arrange the workcell. After motion programming (MOTION), the design is evaluated in terms of: a) workspace analysis, b) coating thickness analysis, and c) cycle time (ANALYSIS). By iterative design and evaluation procedure, a feasible and efficient robotic design can be attained. As the developed system has motion planning and analysis features, it can be also used as an off-line robot programming system in operation stage. Including the details of each module, this paper also presents a case study made for an actual painting line.

  • PDF

무선랜을 이용한 조립 작업 로봇의 협력 제어 시스템 구축 (Foundation of Cooperative Control System of Assembly-Working Robots Using Wireless LAN)

  • 박상영;이귀형
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.121-129
    • /
    • 2017
  • In this study, we investigated a cooperative control system of assembly robots using wireless LAN. We developed two different types of robots to assemble three blocks on a workbench. Robot1 can assemble blocks on a workbench and Robot2 can carry blocks to Robot1. We constructed an ROS-based communication system and shared data. Three blocks and one workbench were recognized by camera-image processing By developing the UI using Windows programming language Visual C#, we evaluated the status of the robots and blocks and controlled the robots. The control system was developed by constructing all elements necessary for cooperative control, such as robot design and fabrication, motor control, ROS-based communication, and image processing. Thus, we completed fundamental tasks required for assembly.

범용의 PC를 이용한 로보트 제어기 구성에 관한 연구 (A design of PC-based robot controller)

  • 정재문;양윤모;김선일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.235-238
    • /
    • 1989
  • Generally, Industrial robots are often controlled using joint processors and treating each joint as an independent servo loop. This paper presents a system architecture for robot control designed for real-time control of motion and sensory processing utilizing general-purpose Personal Computer. And for easily use and system expendability, robot language is implemented with C-language as base language. Through this system user can easily update robot language by design of his own language primitives. This system also don't require another development tool and can be used as advanced algorithm simulator in robotics laboratories.

  • PDF

다관절 로봇의 동적 시뮬레이터 설계 (A Design of Dynamic Simulator of Articulated Robot)

  • 박인만;정성원
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.75-81
    • /
    • 2015
  • This study proposes an articulated robot control system using an on/off-line robot graphic simulator with multiple networks. The proposed robot control system consists of a robot simulator using OpenGL, a robot controller based on a DSP(TMS320) motion board, and the server/client communication by multiple networks. Each client can control the real robot through a server and can compare the real robot motion with the virtual robot motion in the simulation. Also, all clients can check and analyze the robot motion simultaneously through the motion image and data of the real robot. In order to show the validity of the presented system, we present an experimental result for a 6-axis vertical articulated robot. The proposed robot control system is useful, especially, in the industrial fields using remote robot control as well as industrial production automation with many clients.

커튼월 설치 로봇 컨트롤러의 설계 및 사용성 평가에 관한 연구 (A Study for Usability and Designing Manual Controller of a Curtain‐wall Installation Robot)

  • 이승열;석재혁;한정완;김병화;한창수
    • 대한인간공학회지
    • /
    • 제25권4호
    • /
    • pp.71-80
    • /
    • 2006
  • A construction robot has been developed for higher productivity and better safety in various construction fields. Especially, curtain wall is suitable for outer wall material of tall commercial building and apartment complexes. This heavy material is, however, hard to install with a manpower and outdated equipment. For this reason, the prototype of ASCI (Automation System for Curtain wall Installation) was developed. This system has a robot controller(i.e. hand-held remote control unit) for the transfer information signal between human operator and robot system. Although study has been conducted on manual controller of ASCI, hardly any information is known about the operator's opinion. In this study, a questionnaire was completed by operator to get their opinion about aspects which need to design a more comfortable and productive manual controller of construction machinery, robot included. Through the result of study, it is expected that this technical data is contributed to the robot controller design for comfort and productivity of various industrial machinery.

자율이동로봇의 목표물 추적을 위한 시각구동장치의 설계 및 제어 (Design of a Visual Servoing System of an Autonomous Mobile Robot using Fuzzy Logic System)

  • 송은지;최병재;류석환
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.454-459
    • /
    • 2006
  • 자율이동로봇에 관한 연구, 개발이 활성화되고 있다. 본 논문에서는 목표물 추적 및 목표물 명중을 위해 사격을 할 수 있는 자율이동로봇의 설계 및 제작에 관하여 기술한다. 여기서는 목표물의 이동을 추적할 수 있도록 팬-틸트(pan-tilt)를 제어한다. USB 웹캠(web cam) 영상에서 대상체의 특정을 추출하고, 추출한 특징으로부터 시각구동장치의 이동 위치 및 방향을 결정하기 위한 퍼지논리시스템을 설계한다. 시뮬레이션을 통해 제안한 방법의 유용성을 검증하고, 이를 실제 자율이동로봇의 시각구동장치에 적용하여 타당성을 입증한다.

The Development of Robot Control System for Nuclear Facilities

  • Lee, Sung-Uk;Kim, Chang-Hoi;Jeong, Seong-Ho;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2696-2700
    • /
    • 2003
  • Nuclear robots should be developed for the reduction of radiation exposure, lower man hours, shorter power outage, and also improved worker safety concerns in performing hazardous and dangerous tasks. Among the components of a nuclear robot system, a robot control system equivalent to a human brain is a crucial point because a nuclear robot does not work without a control system. Therefore, in this paper, we will explain the requirements for a robot control system for a nuclear robot from a general point of view and also review the robot control systems of nuclear robots that were developed domestically, to assist a researcher beginning with the design for the control system of nuclear robots. The explained robot control system will be useful to develop the control system for industrial robots, home robots and other robots which are needed for tele-operation and are controlled through the internet.

  • PDF

소형 교육용 다관절로봇 RTOS 구현을 위한 디자인 패턴 & 리팩토링 적용 (Applying Design Pattern & Refactoring on Implementing RTOS for the Small Educational Multi-Joint Robot)

  • 손현승;김우열;안홍영;김영철
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.217-224
    • /
    • 2009
  • 기존의 교육용 소형 다관절로봇은 펌웨어를 이용하여 개발해왔다. 이런 시스템일 경우 단순동작만 수행할 수 있기 때문에 교육용으로 활용가치가 떨어진다. 그러나 교육용 소형 다관절로봇에 RTOS를 적용하면 다양한 동작의 수행이 가능하다. RTOS를 적용하면 시스템의 효율이 높아지지만 SW 복잡도가 높아져 교육용으로 사용하기 어려운 문제가 있다. 이런 문제를 해결하기 위해서 본 논문에서는 디자인 패턴과 리팩토링을 적용한다. 디자인 패턴과 리팩토링을 적용하여 RTOS를 설계하면 이미 알려진 패턴의 개념이 사용되기 때문에 RTOS의 전문 개발자가 아니어도 이해하기 쉬어진다. 뿐만 아니라 설계가 문서화되기 때문에 기존의 RTOS를 이용하여 새로운 시스템에 알맞은 RTOS로 변경이 용이해 진다. 그래서 본 논문에서는 디자인패턴을 사용하여 RTOS를 설계하고 RTOS 코드에 리팩토링을 적용하였다.

  • PDF

실외환경에서의 이동 목표 추종용 로봇의 개발 (Development of The Moving Target Tracking Robot in Outdoor Environment)

  • 안철기;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.954-962
    • /
    • 2002
  • In a park or street, we can see many people jogging or walking with their dogs tracking their masters. In this study, an entertainment robot that imitates a dog's behavior is created. The robot's task is tracking a moving target that is recognized as the master. In order to design the robot, the ecological approach. in which the robot's goals and surroundings heavily influence its design, is used. A three-wheel type locomotion system is designed as the robot's physical structure which can follow a human jogging in outdoor space like a park. A sensor system which can detect the position of a master for the robot in the outdoor space, is developed. This sensor system consists of a signal transmitter which is at the hand of a master and some sensors which are mounted on the robot. The transmitter emits RF(radio frequency) and ultrasonic signals and the sensors detect the direction and distance from the robot to the transmitter by using the received signals. For the control architecture of the robot, a purely reactive behavior-based method is used in order to increase speed of response. The developed robot is evaluated through experiments conducted in indoor and outdoor environments.

사용자 안전요소를 고려한 상지 재활치료용 2축 델타로봇 개발 (Development of a 2-axis Delta Robot for Upper-limb Rehabilitation with Considering User Safety)

  • 백승환;이준식
    • 한국산업융합학회 논문집
    • /
    • 제26권1호
    • /
    • pp.15-26
    • /
    • 2023
  • In this study, an end-effector robot which is a two-axis delta robot type for upper-limb rehabilitation is designed. It is not only rehabilitation functions that has designed robot but also mechanical and electrical safety devices were constructed to ensure patient safety. By constructing the two-axis delta robot is combined with an LM guide, the operating range and rigidity required for rehabilitation were secured. The electrical safety system which is required for the medical robot was designed, and a safety strategy was established to ensure patient safety and it is applied in the integrated safety circuit. The safety is considered in whole design process from the robot's mechanical design to the electric control unit.