• Title/Summary/Keyword: Robot Pattern

Search Result 322, Processing Time 0.038 seconds

Study on robot end-effector tracking using structured laser pattern diode (구조화 레이저패턴다이오드를 이용한 Robot End-Effector 추적연구)

  • 조재완;이남호;이용범;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.523-526
    • /
    • 1996
  • In this paper, robot endeffector tracking using sensory information from structured laser pattern diode, is described. In order to track robot endeffector robustly irrespective of translation, scaling and rotation of robot working tool, structured laser pattern is used as track feature. Structured laser patterns of crosshair, concentric circles, dot matrix, and parallel lines are illuminated to robot endeffector. Illuminated laser patterns are held invariently and coherently irrespective of various motions of robot endeffector. Extracting and tracking these invariant structured laser patterns as track feature, the whole system keeps tracking of the robot endeffector robustly and effectively provided that structured laser pattern is always assumed to aim at robot endeffector.

  • PDF

Use of learning method to generate of motion pattern for robot (학습기법을 이용한 로봇의 모션패턴 생성 연구)

  • Kim, Dong-won
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.23-30
    • /
    • 2018
  • A motion pattern generation is a process of calculating a certain stable motion trajectory for stably operating a certain motion. A motion control is to make a posture of a robot stable by eliminating occurring disturbances while a robot is in operation using a pre-generated motion pattern. In this paper, a general method of motion pattern generation for a biped walking robot using universal approximator, learning neural networks, is proposed. Existing techniques are numerical methods using recursive computation and approximating methods which generate an approximation of a motion pattern by simplifying a robot's upper body structure. In near future other approaches for the motion pattern generations will be applied and compared as to be done.

Control Gait Pattern of Biped Robot based on Human's Sagittal Plane Gait Energy (인간 관절 에너지 분석을 통한 이족로봇의 자연스러운 보행 제어)

  • Ha, Seung-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, gait trajectories of the biped robot on the sagittal plane are not enough to construct the complete gait pattern because the biped robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained, as proved by the experiments.

Kinematic Based Walking Pattern of Biped robot (기구학을 이용한 이족보행 로봇의 보행패턴)

  • Kim, Dong Won
    • Journal of Internet of Things and Convergence
    • /
    • v.4 no.2
    • /
    • pp.7-11
    • /
    • 2018
  • In this paper, kinematic based walking pattern generation of biped walking robot is reviewed. Biped walking robot should be consisted of 6 Degree of Freedom(DOF) for each leg to walk properly in 3 dimensional circumstance. In this paper, simple structure of biped robot is depicted for walking pattern firstly. After fixing path of ankle of the robot, angle joints are coming from kinematic equatioins. Coordination of joints of a robot was set for dynamic analysis also. So walking pattern of a robot will be designed using dynamic equations of coordination of joint angles. Finally, setting of ankle of robot and pattern generation are key procedures of the robot walking.

Biped robot gait pattern generation using frequency feature of human's gait torque analysis (인간의 보행 회전력의 주파수 특징 분석을 이용한 이족로봇의 적응적 보행 패턴 생성)

  • Ha, Seung-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.100-108
    • /
    • 2008
  • This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, galt trajectories of the biped robot on the sagittal Plane are not enough to construct the complete gait pattern because the bided robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained.

Performance Enhancement of Soccer Robot System by Changing Color Patch (칼라 패치 변경을 이용한 축구 로봇 시스템의 성능 개선)

  • Ko, Chang-Gun;Jang, Mun-Hee;Lee, Suk-Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.3
    • /
    • pp.118-125
    • /
    • 2009
  • This paper proposes a novel method to enhance performance of soccer robot system using optimal color patch mounted on the robot. In soccer robot system, the position and orientation of the robot can be estimated with color patch under real time environment. However, the location estimation of the robot is very sensitive to the pattern of color patch. In addition, pattern recognition and navigation algorithm are operated independently to reduce the operation time. The experimental results show that the proposed pattern of patch is effective to reduce the position and orientation error of the robot.

  • PDF

Walking Pattern Generation for a Biped Robot Using Polynomial Approximation (다항식 근사를 이용한 이족보행 로봇의 보행패턴 생성)

  • Kang, Yun-Seok;Park, Jung-Hun;Yim, Hong-Jae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.567-572
    • /
    • 2004
  • In this research, a stable walking pattern generation method for a biped robot is presented. A biped robot is considered as constrained multibody system by several kinematic joints. The proposed method is based on the optimized polynomial approximation of the trunk motion along the moving direction. Foot motions can be designed according to the ground condition and walking speed. To minimize the deviation from the desired ZMP, the trunk motion is generated by the fifth order polynomial approximation. Walking simulation for a virtual biped robot is performed to demonstrate the effectiveness and validity of the proposed method. The method can be applied to the biped robot for stable walking pattern generation.

  • PDF

EKF-based Simultaneous Localization and Mapping of Mobile Robot using Laser Corner Pattern Matching (레이저 코너 패턴의 매칭을 이용한 이동 로봇의 EKF 기반 SLAM)

  • Kim, Tae-Hyeong;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2094-2102
    • /
    • 2016
  • In this paper, we propose an extended Kalman filter(EKF)-based simultaneous localization and mapping(SLAM) method using laser corner pattern matching for mobile robots. SLAM is one of the most important problems of mobile robot. However, existing method has the disadvantage of increasing the computation time, depending on the number of landmarks. To improve computation time, we produce the corner pattern using classified and detected corner points. After producing the corner patterns, it is estimated that mobile robot's global position by matching them. The estimated position is used as measurement model in the EKF. To evaluated proposed method, we preformed the experiments in the indoor environments. Experimental results of proposed method are shown to maintain an accuracy and decrease the computation time.

Modified Swimming Pattern to Control Propulsive Force for Biomimetic Underwater Articulated Robot (생체모방형 수중 다관절 로봇의 추진력 제어를 위한 유영 패턴 재생성)

  • Jeong, Seonghwan;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.285-292
    • /
    • 2016
  • For articulated swimming robots, there have been no researches about controlling the motion or trajectory following. A control method for articulated swimming robot is suggested by extending a previous algorithm, ESPG (Extended Swimming Pattern Generator). The control method focuses on the situation that continuous pre-determined swimming pattern is applied for long range travelling. In previous studies, there has not been a way to control the propulsive force when a swimming pattern created by ESPG was in progress. Hence, no control could be made unless the swimming pattern was completed even though an error occurred while the swimming pattern was in progress. In order to solve this problem, this study analyzes swimming patterns and suggests a method to control the propulsive force even while the swimming pattern was in progress. The angular velocity of each link is influenced and this eventually modifies the propulsive force. However, The angular velocity is changed, a number of problems can occur. In order to resolve this issue, phase compensation method and synchronization method were suggested. A simple controller was designed to confirm whether the suggested methods are able to control and a simulation has affirmed it. Moreover, it was applied to CALEB 10 (a biomimetic underwater articulated robot) and the result was verified.

Walking Pattern Generation employing DAE Integration Method

  • Kang Yun-Seok;Park Jung-Hun;Yim Hong Jae
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.364-370
    • /
    • 2005
  • A stable walking pattern generation method for a biped robot is presented in this paper. In general, the ZMP (zero moment point) equations, which are expressed as differential equations, are solved to obtain a stable walking pattern. However, the number of differential equations is less than that of unknown coordinates in the ZMP equations. It is impossible to integrate the ZMP equations directly since one or more constraint equations are involved in the ZMP equations. To overcome this difficulty, DAE (differential and algebraic equation) solution method is employed. The proposed method has enough flexibility for various kinematic structures. Walking simulation for a virtual biped robot is performed to demonstrate the effectiveness and validity of the proposed method. The method can be applied to the biped robot for stable walking pattern generation.