• Title/Summary/Keyword: Robot Operating System

Search Result 271, Processing Time 0.044 seconds

A Study on Design of Smart Home Service Robot McBot II (스마트 홈 서비스 로봇 맥봇II의 설계에 관한 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1824-1832
    • /
    • 2011
  • In this paper, a smart home service robot McBot II is newly developed in much more practical and intelligent system than McBot I which we had developed a few years ago. Thus far, vacuum-cleaners have lightened the burden of household chores but the operational labor that vacuum-cleaners entail has been very severe. Recently, a cleaning robot was commercialized to solve but it also was not successful because it still had the problem of mess-cleanup, which pertained to the clean-up of large trash and the arrangement of newspapers, clothes, etc. Hence, we develop a new home mess-cleanup robot McBot II to completely overcome this problem on real environments. The mechanical design and the basic control of McBot II, which performs mess-cleanup function etc. in house, is actually focused in this paper. McBot II is mechanically modeled in the same method that the human works in door by using the waist and the hands. The big-ranged vertical lift and the shoulder joints to be able to forward move are mechanically designed for the operating function as the human's waist when the robot works. The mobility of McBot II is designed in the holonomic mobile robot for the collision avoidance of obstacle and the high speed navigation on the small area in door. Finally, good performance of McBot II, which has been optimally desinged, is confirmed through the experimental results for the control of the robotic body, mobility, arms and hands in this paper.

Development of Smart Mobility System for Persons with Disabilities (장애인을 위한 스마트 모빌리티 시스템 개발)

  • Yu, Yeong Jun;Park, Se Eun;An, Tae Jun;Yang, Ji Ho;Lee, Myeong-Gyu;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.97-103
    • /
    • 2022
  • Low fertility rates and increased life expectancy further exacerbate the process of an aging society. This is also reflected in the gradual increase in the proportion of vulnerable groups in the social population. The demand for improved mobility among vulnerable groups such as the elderly or the disabled has greatly driven the growth of the electric-assisted mobility device market. However, such mobile devices generally require a certain operating capability, which limits the range of vulnerable groups who can use the device and increases the cost of learning. Therefore, autonomous driving technology needs to be introduced to make mobility easier for a wider range of vulnerable groups to meet their needs of work and leisure in different environments. This study uses mini PC Odyssey, Velodyne Lidar VLP-16, electronic device and Linux-based ROS program to realize the functions of working environment recognition, simultaneous localization, map generation and navigation of electric powered mobile devices for vulnerable groups. This autonomous driving mobility device is expected to be of great help to the vulnerable who lack the immediate response in dangerous situations.

A Study on the Characteristic Method of Wearable Robot by Mission Profile (임무유형별 착용로봇 특성화 방안 연구)

  • Dowan Cha;Kyungtaek Lee;Joongeup Kye
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.444-455
    • /
    • 2023
  • In this report, a specialization plan for wearable robots by mission profile was investigated and analyzed to derive an application plan. The final goal of this study was to derive the operating requirements of wearable robots according to specialized plans, and to conduct a specialized study on wearable robots by mission profile through investigation/analysis of specialized plans for each mission profile. In the study, 1) Research on technology trends related to military wearable robots such as patents and papers, 2) Research/analysis of mission profiles to characterize wearable robots, 3) Analysis of wearable robot specialization plans according to mission profiles, and 4) Requirements for wearable robot operation were derived. In the first time of the study, a survey on technology trends related to wearable robots for soldiers such as patents and papers was completed, and a military consultative body was conducted to derive measures to characterize wearable robots. In addition, a survey was conducted on mission profiles, and the second time study derived Key Performance Parameters (KPP) for operational performance, core performance, and system performance based on scenarios by mission profile. However, it is revealed that the KPP derived from the research results was not covered in this paper because it was judged that more in-depth research was needed prior to disclosure. In order to prepare for future battlefield situations and increase the usability of wearable robots, this study was conducted to characterize wearable robots by considering the characteristics of soldiers' equipment according to mission profiles and to characterize wearable robots by mission profile.

A Study on Current, Velocity, Position Gain Tuning Technique of Servo Position Controller using Simulation (시뮬레이션을 이용한 서보 위치제어기의 전류, 속도, 위치이득 동조기법에 관한 연구)

  • Park, Ki-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.634-640
    • /
    • 2011
  • When a servo position controller of a robot or a driving units is composed of a PID controller, servomechanism which is modelled is composed of current, velocity and position control loops. After this model is simulated, the technique operating gain of each controller is suggested. The model consists of current, velocity and position controllers from the inside to the outside gradually. Also, to combine velocity and position controllers with 2 order system, simulation is performed after current controllers are composed, which are able for current loop to work ideally. If a current controller is treated with constant, it is possible for velocity and position controller to consist of controller into 2 order system. The technique is verified by applying T-company servo motor which is much more applied to current, velocity and position controller robots.

OPRoS based Fault Tolerance Support for Reliability of Service Robots (서비스로봇의 신뢰성 향상을 위한 OPRoS 기반 Fault-tolerance 기법)

  • Ahn, Hee-June;Lee, Dong-Su;Ahn, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.601-607
    • /
    • 2010
  • For commercial success of emerging service robots, the fault tolerant technology for system reliability and human safety is crucial. Traditionally fault tolerance methods have been implemented in application level. However, from our studies on the common design patterns in fault tolerance, we argue that a framework-based approach provides many benefits in providing reliability for system development. To demonstrate the benefits, we build a framework-based fault tolerant engine for OPRoS (Open Platform for Robotic Services) standards. The fault manager in framework provides a set of fault tolerant measures of detection, isolation, and recovery. The system integrators choose the appropriate fault handling tools by declaring XML configuration descriptors, considering the constraints of components and operating environment. By building a fault tolerant navigation application from the non-faulttolerant components, we demonstrate the usability and benefits of the proposed framework-based approach.

Design of Navigation Controller for Autonomous Mobile Robots using Kalman Filter (칼만필터를 사용한 자율주행로봇의 항법제어기 설계)

  • Choi, Kwang-Sup;Park, Tae-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1807-1808
    • /
    • 2008
  • When it is used for autonomous mobile robots by using dead-reckoning system, odometry system with encorder is the simplest method as well as well-known in the industry. However, odometry system is reflected slide, friction and mechanical errors of wheels when operating the position estimation. And also in order to minimize errors of direction angle which is the most important factor that it is designed the controller in controlling kinematics and quadratic curve, PID that came into the values of sensor fusion with encorder and gyroscope sensor. After designing, the autonomous mobile robot is producted practically and inspected how it works.

  • PDF

Development and Tank Test of an Autonomous Underwater Vehicle 'ISiMI' (자율무인잠수정 테스트베드 이심이의 개발과 수조시험)

  • Jun, Bong-Huan;Park, Jin-Yeong;Lee, Pan-Mook;Lee, Fill-Youb;Oh, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.67-74
    • /
    • 2007
  • Maritime and Ocean Engineering Research Institute (MOERI), a branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) named ISiMI (Integrated Submergible for Intelligent Mission Implementation). ISiMI is an AUV platform to satisfy the various needs of experimental test required for development of challenging technologies newly investigated in the field of underwater robot; control and navigational algorithms and software architectures. The main design goal of ISiMI AUV is downsizing which will reduce substantially the operating cost compared to other vehicles previously developed in KORDI such as VORAM or DUSAUV. As a result of design and manufacturing process, ISiMI is implemented to be 1.2 m in length, 0.17 m in diameter and weigh 20 kg in air. A series of tank test is conducted to verify the basic functions of ISiMI in the Ocean Engineering Basin of MOERI, which includes manual control with R/F link, auto depth, auto heading control and a final approach control for underwater docking. This paper describes the implementation of ISiMI system and the experimental results to verify the function of ISiMI as a test-bed AUV platform.

Development and Trials of an Small Autonomous Underwater Vehicle 'ISiMI' (소형무인잠수정(AUV) 이심이의 개발 및 시험)

  • Jun, Bong-Huan;Park, Jin-Yeong;Lee, Pan-Mook;Lee, Fill-Youb;Lee, Jong-Moo;Oh, Jun-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.347-350
    • /
    • 2006
  • Maritime and Ocean Engineering Research Institute (MOERI), a branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) named ISiMI(Integrated Submergible for Intelligent Mission Implementation). ISiMI is an AUV platform to satisfy the various needs of experimental test required for development of challenging technologies newly investigated in the field of underwater robot; control and navigational algorithms and software architectures. The main design goal of ISiMI AUV is downsizing which will reduce substantially the operating cost compared to other vehicles previously developed in KORDI such as VORAM or DUSAUV. As a result of design and manufacturing process, ISiMI is implemented to be 1.2m in length, 0.17m in diameter and weigh 20 kg in air. A series of tank test is conducted to verify the basic functions of ISiMI in the Ocean Engineering Basin of MOERI, which includes manual control with R/F link, auto depth, auto heading control and a final approach control for underwater docking. This paper describes the implementation of ISiMI system and the experimental results to verify the function of ISiMi as a test-bed AUV platform.

  • PDF

Design and Development of 600 W Proton Exchange Membrane Fuel Cell (600 W급 연료전지(PEMFC)의 설계 및 제작)

  • Kim, Joo-Gon;Chung, Hyun-Youl;Bates, Alex;Thomas, Sobi;Son, Byung-Rak;Park, Sam;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.17-22
    • /
    • 2014
  • The design of a fuel cells stack is important to get optimal output power. This study focuses on the evaluation of fuel cell system for unmaned aerial vehicles (UAVs). Low temperature proton exchange membrane (LTPEM) fuel cells are the most promising energy source for the robot applications because of their unique advantages such as high energy density, cold startup, and quick response during operation. In this paper, a 600 W open cathode LTPEM fuel cell was tested to evaluate the performance and to determine optimal operating conditions. The open cathode design reduces the overall size of the system to meet the requirement for robotic application. The cruise power requirement of 600 W was supported entirely by the fuel cell while the additional power requirements during takeoff was extended using a battery. A peak of power of 900 W is possible for 10 mins with a lithium polymer (LiPo) battery. The system was evaluated under various load cycles as well as start-stop cycles. The system response from no load to full load meets the robot platform requirement. The total weigh of the stack was 2 kg, while the overall system, including the fuel processing system and battery, was 4 kg.

The Design and Implementation of a Network-based Stand-alone Motion System

  • Cho, Myoung-Chol;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.865-870
    • /
    • 2003
  • A motion controller has been used variously in industry such as semiconductor manufacture equipment, industrial robot, assembly/conveyor line applications and CNC equipment. There are several types of controller in motion control. One of these is a PC-based motion controller such as PCI or ISA, and another is stand-alone motion controller. The PC bus-based motion controller is popular because of improving bus architectures and GUI (Graphic User Interface) that offer convenience of use to user. There are some problems in this. The PC bus-based solution allows for only one of the form factors, so it has a poor flexibility. The overall system package size is bigger than other motion control system. And also, additional axes of control require additional slot, however the number of slots is limited. Furthermore, unwieldy and many wirings come to connect plants or I/O. The stand-alone motion controller has also this limit of axes of control and wiring problems. To resolve these problems, controller must have capability of operating as stand-alone devices that resides outside the computer and it needs network capability to communicate to each motion device. In this paper, a network-based stand-alone motion system is proposed. This system integrates PC and motion controller into one stand-alone motion system, and uses CAN (Controller Area Network) as network protocol. Single board computer that is type of 3.5" FDD form factor is used to reduce the system size and cost. It works with Windows XP Embedded as operating system. This motion system operates by itself or serves as master motion controller that communicates to slave motion controller. The Slave motion controllers can easily connect to master motion system through CAN-network.

  • PDF