• Title/Summary/Keyword: Robot Motor

Search Result 532, Processing Time 0.038 seconds

폐회로 기구학적 구조의 벽면이동 로봇 설계

  • Lee, Jeong-Hun;Ryu, Seong-Mu;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2065-2073
    • /
    • 2000
  • In this paper, we present a wall climbing robot whose gate pattern takes after those of specialized climbing animals such as spiders. Characteristic features of the biological locomotion are partly realized in the design of the mechanism. The robot has two legs and a trunk. Each one-dof leg with suction pads is driven by a motor which employs a closed loop linkage mechanism, and the trunk with suction pads steers the whole body of the robot using a motor. By generating adequate trajectories of the leg and simultaneously alternating the suction pattern between the legs and the trunk, we can achieve the spider like motion. The proposed idea is implemented in a robot and some tests are performed to evaluate its performance.

Development of an In-Pipe Inspection and Cleaning Robot (배관 검사 및 청소 로봇의 개발)

  • Choi, Hyeung-Sik;Na, Won-Hyun;Kang, Dong-Wan;Kang, Hyung-Suk;Jeon, Ji-Gwang;Kim, Hyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.662-671
    • /
    • 2009
  • In this paper, a robot was developed for in-pipe cleaning and inspecting a large number of circular in-pipes of sea plants, ships, and buildings. A pressure generation mechanism was devised to inspect circular in-pipes with different diameters and to move up and down slant or perpendicular slopes in-pipes. For inspection of the dark inner side of the pipe, a light system using LED which dissipats small electricity was developed. Also, a design method was analyzed to decide the capacity of driving motor for the robot when the mass and maximum velocity of the robot are identified. The robot developed based on the design specification, was tested to verify the performance of the pressure generation mechanism. In addition, a control system was developed for the test.

Development of cooperating robot arms with ultra light weight (초경량 양팔로봇의 개발)

  • Choi H.S.;Moon W.J.;Kim B.G.;Lim K.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.67-68
    • /
    • 2006
  • In this paper, a new revolute cooperating robot arms with 12 d.o.f was developed for autonomous moving robots. The robot ann was designed to have the load capacity of 10 Kg. For this, a new joint actuator based on the fourbar link mechanism was employed. As a control system for the robot arm, a distributed control system was developed composed of the main controller and five motor controller for the ann joints. The main controller and the motor controller were developed using the ARM microprocessor and the TMS320c2407 processor, respectively. To validate the performance of the robot system, an experiment to support 10 Kg payload was performed.

  • PDF

Behavior-based Learning Controller for Mobile Robot using Topological Map (Topolgical Map을 이용한 이동로봇의 행위기반 학습제어기)

  • Yi, Seok-Joo;Moon, Jung-Hyun;Han, Shin;Cho, Young-Jo;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2834-2836
    • /
    • 2000
  • This paper introduces the behavior-based learning controller for mobile robot using topological map. When the mobile robot navigates to the goal position, it utilizes given information of topological map and its location. Under navigating in unknown environment, the robot classifies its situation using ultrasonic sensor data, and calculates each motor schema multiplied by respective gain for all behaviors, and then takes an action according to the vector sum of all the motor schemas. After an action, the information of the robot's location in given topological map is incorporated to the learning module to adapt the weights of the neural network for gain learning. As a result of simulation, the robot navigates to the goal position successfully after iterative gain learning with topological information.

  • PDF

Development of Mobile Robot for Rough Terrain (야지 주행을 위한 견마형 로봇 개발)

  • Lee, Ji-Hong;Shim, Hyung-Won;Jo, Kyoung-Hwan;Hong, Ji-Mi;Kim, Jung-Bae;Kim, Sung-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.883-895
    • /
    • 2007
  • In this work, we present the development of a patrol robot which is intended to navigate outdoor rough terrain. Proposed mechanism consists of six legs for overcoming an obstacle, and six wheels for traveling. Also, in order to absorb vibration in rough terrain effectively, the slide-spring system and tubed type tire are adopted to each leg and each wheel. The control system of robot consists of several imbedded boards for management of lots of diverse devices such as sensors designed for rough terrain, motor controllers, camera, micro controller and so on. And the base system of the robot is designed to operate in real time and to surveille in the vicinity of the robot, and the robot system is controlled by wireless LAN connected to GUI-based remote control system, while CAN communication connects the control board and the device controllers for sensors and motor controllers. For operating this robot system efficiently, we propose the control algorithms for autonomous navigation using GPS, stabilization maintenance by posture control, obstacle-avoidance by impedance control, and obstacle-overcoming with interference-avoidance between wheels. The performance of the robot and the proposed algorithms are tested and proved by a set of experiments in outdoor rough terrain.

A study on Development of Actuator for Biped Walking Robot (직립보행로봇 Actuator 개발에 관한 연구)

  • Moon, Jin-Soo;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.73-80
    • /
    • 2005
  • Biped robot requires that an energy source and a control part should be installed on the body to realize active system. So, we choose the DC motor having high torque in compact size in this study. In the DC motor serve system, we choose power amplifier with analog configuration, developed the module combined the controller and the driver. We applied this module to robot actuator and studied the response characteristics in an action and a return. Main controller with serve system, loading PIC micro controller, can be load on the robot with light weight.

Development of Speed Reducer Integrated Driving system Apply to Vehicle Window Motor (차량용 윈도우 모터를 적용한 감속기 일체형 구동부 개발)

  • Youm, Kwang-Wook;Ham, Seong-Hun
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2016
  • In this study, design the core part of the driving of the robot. The power of the driving is window motor for automobiles obtained by using a method of directly to the motor shaft of the worm gear type. The decelerator consists of a worm gear to receive power from the motor shaft, Helical gear contact to worm gear, a pinion gear to be connected in line with the helical gear, and an output shaft to be engaged to the pinion gear. Drive system by using the power from the motor shaft based on the deceleration gear designed by the gear ratio set by the gear teeth increases the torque.

A Motor Selection Criteria for a Mechatronic System and Its Application to Design a Mine Detection Manipulator for a Multi-Purpose Dog-Horse Robot (기전 시스템의 구동 모터 선정 방법과 견마로봇용 지뢰탐지 구동 장치에의 적용)

  • Choi, Chang-Hwan;Jung, Seung-Ho;Kim, Seok-Hwan;Lee, Jeong-Yeob;Choe, Tok-Son;Chung, Sang-Chul;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.185-194
    • /
    • 2007
  • This paper presents a motor selection technique for a manipulator design that is used in a multipurpose dog-horse robot. Since the dynamics of a manipulator and its servo drives are closely related to each other, it requires a repetitive analysis to determine a suitable motor. In order to simplify this procedure, Straete et al. proposed a simple normalization method to separate the load dependent terms and the motor dependent terms. This technique is adopted in this paper for selecting a motor in designing a manipulator.

DEVELOPMENT OF AC SERVO MOTOR CONTROLLER FOR INDUSTRIAL ROBOT AND CNC MACHINE SYSTEM (산업용 ROBOT와 공작기계를 위한 AC SERVO MOTOR 제어기 개발)

  • Lim, Sang-Gwon;Lee, Jin-Won;Moon, Yong-Ky;Jeon, Dong-Lyeol;Jin, Sang-Hyun;Oh, In-Hwan;Kim, Dong-Il;Kim, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1211-1214
    • /
    • 1992
  • AC servo motor drives, Fara DS series, proposed in this paper can be effectively used in robots, CNC machine tools, and FA system with AC servo motors as actuators. The inverter of the AC servo drive consists of IGBT (Insulated Gate Bipolar Transistor) which have high switching frequency. Noises and vibrations generated in variable speed control of AC servo motors can be greatly reduced due to their high switching frequencies. In the developed servo drive, maximum torque is always generated in the whole speed range by compensating phase shift, which results from the nonlinearies of the AC servo motor during abrupt acceleration and deceleration. Abundant protection functions are provided to prevent abnormal state of the servo motor, and furthermore diverse user options are considered provided for the effective application. The proposed AC servo motor drive is designed to minimize velocity variation with respect to external load, supply voltage, environmental temperature, and humidity, so can be widely used in the fields of factory automation including robots and CNC msachine tools.

  • PDF