• 제목/요약/키워드: Robot Motion Planning

검색결과 200건 처리시간 0.028초

Motion Planning of an Autonomous Mobile Robot in Flexible Manufacturing Systems

  • Kim, Yoo-Seok-;Lee, Jang-Gyu-
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1254-1257
    • /
    • 1993
  • Presented in this paper is a newly developed motion planning method of an autonomous mobile robot(MAR) which can be applied to flexible manufacturing systems(FMS). The mobile robot is designed for transporting tools and workpieces between a set-up station and machines according to production schedules of the whole FMS. The proposed method is implemented based on an earlier developed real-time obstacle avoidance method which employs Kohonen network for pattern classification of sonar readings and fuzzy logic for local path planning. Particulary, a novel obstacle avoidance method for moving objects using a collision index, collision possibility measure, is described. Our method has been tested on the SNU mobile robot. The experimental results show that the robot successfully navigates to its target while avoiding moving objects.

  • PDF

양팔 로봇을 이용한 조립 작업에서 수명을 고려한 최적 운동 계획법 (Optimized Motion Planning Considering the Lifetime for Bimanual Robotic Assembly)

  • 황면중
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.972-976
    • /
    • 2015
  • The objective of this research is to verify the quantitative efficiency of a bimanual robotic task. Bimanual robots can realize dexterous and complicated motions using two cooperating arms. However, its motion planning and control method are not simple for implementing flexible tasks such as assembly. In this paper, the proposed motion planning method is used to find an optimal solution satisfying a designed cost function and constraints with regard to the kinematics and redundancy of the bimanual robot. The simulation results show that the lifetime of the manipulator can be changed by the proposed cost function consisting of angular velocity and angular acceleration of each joint in the same assembly task.

허리관절을 가지는 4족보행로봇의 지그재그 걸음새 계획 (Discontinuous Zigzag Gait Planning of Quadruped Walking Robot with an Articulated Spine)

  • 박세훈;하영호;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제10권8호
    • /
    • pp.703-710
    • /
    • 2004
  • This paper presents discontinuous zigzag gait analysis for a newly modeled quadruped walking robot with an articulated spine which connects the front and rear parts of the body. An articulated spine walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. First, we suggest a kinematic modeling of an articulated spine robot which has new parameters such as a waist-joint angle, a rotate angle of a front and rear body and describe characteristics of gait using an articulated spine. Next, we compared the difference of walking motion of newly modeled robot with that of a single rigid-body robot and analyzed the gait of an articulated spine robot using new parameters. On the basis of above result, we proposed a best walking motion with maximum stability margin. To show the effectiveness of proposed gait planning by simulation, firstly the fastest walking motion is identified based on the maximum stride, because the longer the stride, the faster the walking speed. Next, the gait stability margin variation of an articulated spine robot is compared according to the allowable waist-joint angle.

레이저 스캐닝 센서를 이용한 이동 로봇의 지역 장애물 회피 방법 (Local Obstacle Avoidance Method of Mobile Robots Using LASER scanning sensor)

  • 김성철;강원찬;김동옥;서동진;고낙용
    • 전기학회논문지P
    • /
    • 제51권3호
    • /
    • pp.155-160
    • /
    • 2002
  • This paper focuses on the problem of local obstacle avoidance of mobile robots. To solve this problem, the safety direction section search algorithm is suggested. This concept is mainly composed with non-collision section and collision section from the detecting area of laser scanning sensor. Then, we will search for the most suitable direction in these sections. The proposed local motion planning method is simple and requires less computation than others. An environment model is developed using the vector space concept to determine robot motion direction taking the target direction, obstacle configuration, and robot trajectory into account. Since the motion command is obtained considering motion dynamics, it results in smooth and fast as well as safe movement. Using the mobile base, the proposed obstacle avoidance method is tested, especially in the environment with pillar, wall and some doors. Also, the proposed autonomous motion planning and control algorithm are tested extensively. The experimental results show the proposed method yields safe and stable robot motion through the motion speed is not so fast.

키넥트 센서를 이용한 동적 환경에서의 효율적인 이동로봇 반응경로계획 기법 (Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments)

  • 두팔람 툽신자갈;이덕진
    • 대한기계학회논문집A
    • /
    • 제39권6호
    • /
    • pp.549-559
    • /
    • 2015
  • 본 논문에서는 동적 움직임을 갖는 장애물이 위치한 주행환경에서 이동로봇의 충돌회피 기능을 포함하는 효율적인 반응경로계획 기법을 제안하고자 한다. 로봇의 동적 장애물과의 충돌회피 기능을 위해서 반응경로계획기법을 기반으로 키넥트센서를 이용한 센서융합기법의 보완을 통해서 자율주행의 강건성을 증대시키고자 하였다. 반응경로기법에서 사용된 접근방식은 동적장애물을 가상좌표평면에서 지역관측기개념을 이용하여 정적장애물로 좌표변환을 가능하게하며, 생성된 가상평면에서의 로봇과 장애물의 충돌 발생 가능한 속도와 경로의 운동학적 정보추출이 가능하게 된다. 또한 키넥트 센서 정보를 융합하여 장애물의 방향과 위치 정보를 추정하여 동적 환경에서의 주행성능의 정미도를 증대시키고자 하였다. 본 연구에서 제안 기술의 성능을 검증하기 위해서 임베디드 로봇플랫폼과 여러 개의 동적 장애물을 이용하여 시뮬레이션 해석 및 실험을 수행하였다.

스프레이 페인팅 작업을 위한 일관화된 로보트 궤적계획법에 관한 연구 (An Integrated Robot-Trajectory-Planning Scheme for Spray Painting Operations)

  • 서석환;우인기
    • 산업공학
    • /
    • 제3권2호
    • /
    • pp.23-38
    • /
    • 1990
  • The use of robots for painting operations is a powerful alternative as a means for automation and quality improvement. A typical method being used for motion planning of the painting robot is to guide the robot along the desired path : the "lead-through" method. Although this method is simple and has been widely used, it has several drawbacks a) The robot cannot be used during the teaching period, b) A human is exposed to a hostile environment, c) The motions taught are, at best, human's skill level. To deal with the above problems, an integrated robot-trajectory planning scheme is presented. The new scheme takes CAD data describing the shape and geometry of the objects, and outputs an optimal trajectory in the sense of coating thickness and painting time. The purpose of this paper is to investigate theoretical backgrounds for such a scheme including geometric modeling, painting mechanics and robot trajectory planning, and develop algorithms for generating spray gun paths and minimum-time robot trajectories. Future study is to implement these algorithms on an workstation to develop an integrated software system ; ATPS(Automatic Trajectory Planning System) for spray painting robots.

  • PDF

이동 로봇의 주행을 위한 새로운 지도 구성 방법 및 경로 계획에 관한 연구 (A Study on New Map Construction and Path Planning Method for Mobile Robot Navigation)

  • 오준섭;박진배;최윤호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권9호
    • /
    • pp.538-545
    • /
    • 2000
  • In this paper we proposed a new map construction and path planning method for mobile robot. In our proposed method first we introduced triangular representation map that mobile robot can navigate through shorter path and flexible motion instead of grid representation map for mobile robot navigation. method in which robot can navigate complete space through as short path as possible in unknown environment is proposed. Finally we proposed new path planning method in a quadtree representation map. To evaluate the performance of our proposed new path planning method in a quadtree representation map. To evaluate the performance of our proposed triangular representation map it was compared with the existing distance transform path planning method. And we considered complete coverage navigation and new path planning method through several examples.

  • PDF

여유 자유도 로봇의 국부 최적 경로 계획 (Locally optimal trajectory planning for redundant robot manipulators-approach by manipulability)

  • 이지홍;이한규;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1136-1139
    • /
    • 1996
  • For on-line trajectory planning such as teleoperation it is desirable to keep good manipulability of the robot manipulators since the motion command is not given in advance. To keep good manipulability means the capability of moving any arbitrary directions of task space. An optimization process with different manipulability measures are performed and compared for a redundant robot system moving in 2-dimensional task space, and gives results that the conventional manipulability ellipsoid based on the Jacobian matrix is not good choice as far as the optimal direction of motion is concerned.

  • PDF

On-line Motion Planner for Multi-Agents based on Real-Time Collision Prognosis

  • Ji, Sang-Hoon;Kim, Ji-Min;Lee, Beom-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.74-79
    • /
    • 2005
  • In this paper, we propose a novel approach to decentralized motion planning and conflict-resolution for multiple mobile agents working in an environment with unexpected moving obstacles. Our proposed motion planner has two characteristics. One is a real-time collision prognosis based on modified collision map. Collision map is a famous centralized motion planner with low computation load, and the collision prognosis hands over these characteristics. And the collision prognosis is based on current robots status, maximum robot speeds, maximum robot accelerations, and path information produced from off-line path planning procedure, so it is applicable to motion planner for multiple agents in a dynamic environment. The other characteristic is that motion controller architecture is based on potential field method, which is capable of integrating robot guidance to the goals with collision avoidance. For the architecture, we define virtual obstacles making delay time for collision avoidance from the real-time collision prognosis. Finally the results obtained from realistic simulation of a multi-robot environment with unknown moving obstacles demonstrate safety and efficiency of the proposed method.

  • PDF

A Study on Path Planning Algorithm of a Mobile Robot for Obstacle Avoidance using Optimal Design Method

  • Tran, Anh-Kim;Suh, Jin-Ho;Kim, Kwang-Ju;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.168-173
    • /
    • 2003
  • In this paper, we will present a deeper look on optimal design methods that are related to path-planning for a mobile robot. To control the motion of a mobile robot in a clustered environment, it's necessary to know a suitable trajectory assuming certain start and goal point. Up to now, there are many literatures that concern optimal path planning for an obstacle avoided mobile robot. Among those literatures, we have chosen 2 novel methods for our further analysis. The first approach [4] is based on HJB(Hamilton-Jacobi-Bellman) equation whose solution is the return-function that helps to generate a shortest path to the goal. The later [5] is called polynomial-path-planning approach, in this method, a shortest polynomial-shape path would become a solution if it was a collision-free path. The camera network plays the role as sensors to generate updated map which locates the static and dynamic objects in the space. Therefore, the exhibition of both path planning and dynamic obstacle avoidance by the updated map would be accomplished simultaneously. As we mentioned before, our research will include the motion control of a true mobile robot on those optimal planned paths which were generated by above algorithms. Base on the kinematic and dynamic simulation results, we can realize the affection of moving speed to the stable of motion on each generated path. Also, we can verify the time-optimal trajectory through velocity tuning. To simplify for our analysis, we assumed the obstacles are cylindrical circular objects with the same size.

  • PDF