• 제목/요약/키워드: Robot Motion Planning

검색결과 197건 처리시간 0.027초

경로예측이 가능한 이동물체와 이동로봇간의 Rendezvous Point에 관한 연구 (A Study on Rendezvous Point between the Mobile Robot and Predicted Moving Objects)

  • 윤정훈;이기성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.84-86
    • /
    • 2001
  • A new navigation method is developed and implemented for mobile robot. The mobile robot navigation problem has traditionally been decomposed into the path planning and path following. Unlike tracking-based system, which minimize intercept time and moved mobile robot distance for optimal rendezvous point selection. To research of random moving object uses algorithm of Adaptive Control using Auto-regressive Model. A fine motion tracking object's trajectory is predicted of Auto-regressive Algorithm. Thus, the mobile robot can travel faster than the target wi thin the robot's workspace. The can select optimal rendezvous point of various intercept time.

  • PDF

사각 보행 로봇의 동적 걸음새에 관한 연구 (A study on Dynamic Gait Quadruped Walking Robot)

  • 김진섭;오준호;조진철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.78-81
    • /
    • 1997
  • In this study, we prepose the dynamic gait in consideration of emerge efficiency. The proposed dynamic gait is applied to the quadruped walking robot and experiments are performed for real robot. We proposed the dynamic gait is diagonal gait which is modified the trot gait in consideration of energy efficiency. The proposed gait is composed of two steps. In one step, the robot walks in the trot gait. In the other step, the robot walks with making the center of gravity lie on the two legs supporting line. Realization of the diagonal intermittent trot gait is performed by open loop contal and motion planning of the proposed gait. The validity of the purposed gait is confirmed by our experiment.

  • PDF

Ruled Surface의 곡률이론을 이용한 새로운 로봇궤적제어기법

  • 김재희;김상철;유범상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.683-691
    • /
    • 1997
  • This paper presents a new robot trajectory generation method based on the curvatre theory of ruled surfacees. robot trajectory is represented as a ruled surface generated by the TCP (Tool center point ) and any one unit vector among the tool frame (usually denoted O, A,N). The curvature theory of ruled surfaces provides the robot control algorithm with the motion property oarameters. The proposed method eliminates the necessity of approximation technic of either joint or cartesian interpolation. This technic may give new methodology of precision robot control. Especially this is very efficient when the robot traces an analytical or form surface if the surface is geometrically modelled.

  • PDF

직선 궤적 계획을 위한 로보트 제어에 관한 연구 (A Study on the Robot Control for Straight Line Trajectory Planning)

  • 길진수;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.405-408
    • /
    • 1991
  • In this paper, the algorithm of Resolved Motion Rate Control(RMRC) is applied to the robot manipulator to implement a desired straight trajectory in the cartesian space, PI controller is also used to control the velocity and position which are produced by RMRC algorithm. And Bounded Deviation Method is used to determine the intermediate knot points which satisfy a given tolerence limit, between the straight line segment.

  • PDF

A Method for Local Collision-free Motion Coordination of Multiple Mobile Robots

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1609-1614
    • /
    • 2003
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. To implement the concept in collision avoidance of multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

  • PDF

교착 회피를 고려한 내고장성 세다리 걸음새 (Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance)

  • 노지명;양정민
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.

라그랑지 보간법을 이용한 로봇 매니퓰레이터의 토크 최소화를 위한 궤적계획 (Trajectory Planning for Torque Minimization of Robot Manipulators Using the Lagrange Interpolation Method)

  • 라로평;황순웅;한창수
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2370-2378
    • /
    • 2015
  • 본 논문에서는 로봇 매니퓰레이터의 토크 최소화를 위한 궤적계획을 위해 라그랑지 보간법을 이용한 Algorithm을 제안하였다. 이를 위해 로봇 매니퓰레이터의 위치에 대한 구속조건이 주어지고 안정성이 보장되어야 한다. 라그랑지 보간법의 Runge's 현상을 회피하기 위해 Chebyshev 보간점을 이용하여 시간 보간점을 설정하였고, 이에 대응하는 최적각도를 찾아내어 라그랑지 보간법을 이용한 매끄러운 관절의 각도, 속도, 가속도 궤적을 얻을 수 있다. 로봇 매니퓰레이터의 토크 소비 최적화를 위한 성능지표를 선정하였으며, 계산된 궤적을 통해 이 성능지표가 최소값을 가지도록 반복 계산하는 과정을 거친다. 이를 통해, 토크와 성능지표를 최소화 시키는 최적의 궤적을 얻을 수 있으며, 로봇 매니퓰레이터가 작업을 수행하기 위한 움직임의 안전성을 보장한다.

사족보행 로봇의 개발을 위한 생체모방적 접근 (Biologically Inspired Approach for the Development of Quadruped Walking Robot)

  • 강태훈;송현섭;최혁렬
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.307-314
    • /
    • 2006
  • In this paper, we present a comprehensive study for the development of quadruped walking robot. To understand the walking posture of a tetrapod animal, we begin with a careful observation on the skeletal system of tertapod animals. From taking a side view of their skeletal system, it is noted that their fore limbs and hind limbs perform characteristic roles during walking. Moreover, the widths of footprints and energy efficiency in walking have a close relationship through taking a front view of their walking posture. According to these observations, we present a control method where the kinematical solutions are not necessary because we develop a new rhythmic gait pattern for the quadruped walking robot. Though the proposed control method and rhythmic pattern are simple, they can provide the suitable motion planning for the robot since the resultant movement is based on the animal's movements. The validity of the proposed idea is demonstrated through dynamic simulations.

페트리넷을 이용한 자율 이동로봇의 운용 (Operation Method For AMR(Autonomous Mobile Robot) Using Petri Net)

  • 이석주;이병주;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.400-400
    • /
    • 2000
  • This paper purposed that verify the validity of Petri Net method for control progressive increase of system complexity, before extend the realized single robot system to multi-robot system. An autonomous mobile robot(AMR) needs decision making, motion control, path planning, tracking a path, obstacle avoidance, and sensor fusion, to complete its task. An AMR integrates and operates these technics through a consistent command system. An error in a command hierarchy which is like duplication or omission of a control command hierarchy for each module results in serious problems. This paper minimizes the error by modeling each module and whole system using Petri Net graphical representation and applies it to the exploration task of an AMR

  • PDF

먹매김 시공 자동화 로봇의 디지털 트윈 모델 구축 방안 연구 (A Study on Establishing a Digital Twin Model for Automated Layout Robots)

  • 박규선;이도현;장민호;김태훈;임현수;조규만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.155-156
    • /
    • 2022
  • In the process of developing an industrial robot, various simulations should be conducted to evaluate the driving, movement, and performance of the robot. Space and time constraints exist to manufacture existing robots and implement various simulations, and efficiency is reduced due to high costs. To solve this problem, many simulations can be conducted by implementing the same movement and working environment as the real environment in virtual reality using digital twin technology. This study proposes a process for establishing a digital twin model of automated layout robots. Using the digital twin model, it is expected that it will not only evaluate the hardware performance of the robot in the future, but also verify the robot's algorithms such as motion planning and work process, identify and solve potential problems in advance, and prevent problems caused by software.

  • PDF