• Title/Summary/Keyword: Robot Interface

Search Result 444, Processing Time 0.027 seconds

Development of a Web Platform System for Worker Protection using EEG Emotion Classification (뇌파 기반 감정 분류를 활용한 작업자 보호를 위한 웹 플랫폼 시스템 개발)

  • Ssang-Hee Seo
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.37-44
    • /
    • 2023
  • As a primary technology of Industry 4.0, human-robot collaboration (HRC) requires additional measures to ensure worker safety. Previous studies on avoiding collisions between collaborative robots and workers mainly detect collisions based on sensors and cameras attached to the robot. This method requires complex algorithms to continuously track robots, people, and objects and has the disadvantage of not being able to respond quickly to changes in the work environment. The present study was conducted to implement a web-based platform that manages collaborative robots by recognizing the emotions of workers - specifically their perception of danger - in the collaborative process. To this end, we developed a web-based application that collects and stores emotion-related brain waves via a wearable device; a deep-learning model that extracts and classifies the characteristics of neutral, positive, and negative emotions; and an Internet-of-things (IoT) interface program that controls motor operation according to classified emotions. We conducted a comparative analysis of our system's performance using a public open dataset and a dataset collected through actual measurement, achieving validation accuracies of 96.8% and 70.7%, respectively.

Improvement on Psychological Stability of the Elderly by Using Companion Robot (반려동물형 로봇을 이용한 고령자 심리 안정의 향상 방안)

  • Lee, Jong-Sik;Lee, Kang-Nyeon
    • Journal of the Korea Knowledge Information Technology Society
    • /
    • v.13 no.3
    • /
    • pp.327-339
    • /
    • 2018
  • This study is on the elderly people's use and experience of pet robots (companion robots). Applying companion robots for the elderly's daily lives can enhance their quality of life. Leisure is main activity of the elderly who are out of work. Therefore, the quality and diversity of leisure can affect the quality of their life. Companion Robots could provide them with more advanced and interesting experiences. Around the world, population aging becomes one of the most important trends in each country. The social and economic burden of aging is serious challenge on sustainability of the world, including S. Korea. The authors examine use of Companion Robots for elderly (from 50 years old to 90 years old). In this experiment, the authors study and measure many factors including system quality, interface quality, displeasure, enjoyment, willingness to reuse, perception on new technology. In regression analysis, intimacy(t=-2.006, p<.05) is significant factor on displeasure of Companion Robot. In another regression, displeasure of Companion Robot (independent variable) is significant factor on enjoyment(t=-3.327, p<.01) and willingness to reuse(t=-2.636, p<.01). Therefore, when elderly one feels less displeasure of Companion Robot, he/she feels more enjoyment and willingness to reuse. As a result, the elderly who don't familiar to new technology could improve quality of life and leisure activity by using companion robot.

An Operating Software Architecture for PC-based (PC기반의 생산시스템을 위한 운용소프트웨어 구조)

  • Park, Nam-Jun;Kim, Hong-Seok;Park, Jong-Gu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1196-1204
    • /
    • 2001
  • In this paper, a new architecture of operating software associated with the component-based method is proposed. The proposed architecture comprises 문 execution module and a decision-making module. In order to make effective development and maintenance, the execution module is divided into three components. The components are referred to as Symbol, Gateway, and Control, respectively: The symbol component is for the GUI environments and the standard interfaces; the gateway component is for the network communication and the structure of asynchronous processes; the control component is for the asynchronous processing and machine setting or operations. In order to verify the proposed architecture, and off-line version of operating software is made, and its steps are as follows; I) Make virtual execution modules for the manufacturing devices such as dual-arm robot, handling robot, CNC, and sensor; ii) Make decision-making module; iii) Integrate the modules and GUI using a well-known development tools such as Microsofts Visual Basic; iv) Execute the overall operating software to validate the proposed architecture. The proposed software architecture in this paper has the advantages such as independent development of each module, easy development of network communication, and distributed processing of resources, and so on.

  • PDF

Interface between Robot and Scanner for Remote Laser Welding System Based on Time Synchronization (시간 동기화에 근거한 리모트 레이저 용접 시스템에서의 로봇과 스캐너 인터페이싱)

  • Kim, Jeong-Jung;Lee, Joon-Woo;Lee, Ju-Jang;Kwon, Kyung-Up;Kang, Hee-Shin;Suh, Jeong
    • Laser Solutions
    • /
    • v.16 no.1
    • /
    • pp.10-14
    • /
    • 2013
  • Remote laser beam welding (RLW) has the benefits of high speed and high quality welding, especially as applied to automotive industry. RLW is designed in a way that end effecter and head of scanner move simultaneously, and require the compensation for the motion of end effecter in order to weld proper position. In this paper, we show the algorithms of RLW that enable the end effecter to synchronize with scanner based on time. The proposed method consists of two algorithms. These algorithms make it possible for the moving end effecter to weld on desired place. The effectiveness of the algorithms is shown by experiments.

  • PDF

Robotic Agent Design and Application in the Ubiquitous Intelligent Space (유비쿼터스 지능형 공간에서의 로봇 에이전트 설계 및 응용)

  • Yoon Han-Ul;Hwang Se-Hee;Kim Dae-Wook;Lee Doong-Hoon;Sim Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1039-1044
    • /
    • 2005
  • This paper presents a robotic agent design and application in the ubiquitous intelligent space. We set up an experimental environment with Bluetooth host, Bluetooth client, furniture and home appliance, and robotic agents. First, the agents basically performed patrol guard to detect unexpected penetration, and to keep home safely from gas-leakage, electric leakage, and so on. They were out to patrol fur a robbery while navigating in a living room and a private room. In this task, we used an area-based action making and a hexagon-based Q-learning to control the agents. Second, the agents communicate with Bluetooth host device to access and control a home appliance. The Bluetooth host offers a manual control to person by inquiring a client robot when one would like to check some place especially. In this exercise, we organize asynchronous connection less (ACL) between the host and the client robots and control the robot maneuver by Bluetooth host controller interface (HCI).

Development of the Fishbot Using Haptic Technology (햅틱기술을 이용한 피시봇 개발)

  • Lee, Young-Dae;Kang, Jeong-Jin;Moon, Chan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.77-82
    • /
    • 2010
  • In this paper, a haptic fishing robot, Fishbot, for a Virtual Fishing System is presented. Fishbot is 3DOF robot and it consists of a XY table and a wheel motor. To simulate the motion of fish, XY table is controlled by position servo drivers with variable torque constraint, and wheel axis is controlled by torque servo driver. Finally, Fishibot detects the end point of fishing pole with cameras to recognize the pose of user, and it can interface with a Virtual Reality System.

Bluetooth Network for Group Behavior of Multi-Agent Robotic System

  • Seo, Sang-Wook;Ko, Kwang-Eun;Hwang, Se-Hee;Jang, In-Hun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.17-21
    • /
    • 2007
  • Multi-Agent Robotic System (MARS) is a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the MARS, a robot contains sensor part to percept the situation around themselves, communication part to exchange information, and actuator part to do given work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, Bluetooth is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots. For the purpose, the communication system must have several features-separated module, flexible interface. We will discuss how to construct and what kind of procedure to develop the communicating system.

Design and Control of X-ray Permeable Teleoperated Stewart Platform for Fracture Surgery (골절 수술용 엑스레이 투과 원격조종 스튜어트 플랫폼의 설계 및 제어)

  • Yoo, Byeongjun;Kim, Hyemi;Lee, Sung-Hak;Lim, Sunho;Park, Tae Gon;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.660-666
    • /
    • 2015
  • To avoid radiation exposure from repeated x-rays taken during orthopedic surgery, an x-ray permeable teleoperated Stewart platform for orthopedic fracture surgery was developed. This system is composed of a user interface device and a teleoperated operational robot, both of which use a Stewart platform mechanism. The links of the operational robot are made from an x-ray permeable material, polycarbonate, to minimize the interference. The forward and inverse kinematics algorithm applied and the structural reliability were both verified through an analysis using commercial engineering software. To monitor the operating status in real time and stop the device during an emergency, a monitoring software was developed. The performance of the x-ray permeable teleoperated Steward platform was validated experimentally.

Robust Speech Endpoint Detection in Noisy Environments for HRI (Human-Robot Interface) (인간로봇 상호작용을 위한 잡음환경에 강인한 음성 끝점 검출 기법)

  • Park, Jin-Soo;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.147-156
    • /
    • 2013
  • In this paper, a new speech endpoint detection method in noisy environments for moving robot platforms is proposed. In the conventional method, the endpoint of speech is obtained by applying an edge detection filter that finds abrupt changes in the feature domain. However, since the feature of the frame energy is unstable in such noisy environments, it is difficult to accurately find the endpoint of speech. Therefore, a novel feature extraction method based on the twice-iterated fast fourier transform (TIFFT) and statistical models of speech is proposed. The proposed feature extraction method was applied to an edge detection filter for effective detection of the endpoint of speech. Representative experiments claim that there was a substantial improvement over the conventional method.

Networked Robots using ATLAS Service-Oriented Architecture in the Smart Spaces

  • Helal, Sumi;Bose, Raja;Lim, Shin-Young;Kim, Hyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.288-298
    • /
    • 2008
  • We introduce new type of networked robot, Ubiquitous Robotic Companion (URC), embedded with ATLAS Service-oriented architecture for enhancing the space sensing capability. URC is a network-based robotic system developed by ETRI. For years of experience in deploying service with ATLAS sensor platform for elder and people with special needs in smart houses, we need networked robots to assist elder people in their successful daily living. Recently, pervasive computing technologies reveals possibilities of networked robots in smart spaces, consist of sensors, actuators and smart devices can collaborate with the other networked robot as a mobile sensing platform, a complex and sophisticated actuator and a human interface. This paper provides our experience in designing and implementing system architecture to integrate URC robots in pervasive computing environments using the University of Florida's ATLAS service-oriented architecture. In this paper, we focus on the integrated framework architecture of URC embedded with ATLAS platform. We show how the integrated URC system is enabled to provide better services which enhance the space sensing of URC in the smart space by applying service-oriented architecture characterized as flexibility in adding or deleting service components of Ubiquitous Robotic Companion.