• Title/Summary/Keyword: Robot Interaction

Search Result 481, Processing Time 0.027 seconds

The Interaction Design of Teaching Assistant Robots Based on Reinforcement Theory: With an Emphasis on the Measurement of Task Performance and Reaction Rate (강화 이론에 근거한 교사 보조 로봇 인터랙션 디자인: 수행도와 반응률 측정을 중심으로)

  • Kwak, So-Nya S.;Lee, Dong-Kyu;Lee, Min-Gu;Han, Jeong-Hye;Kim, Myung-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.142-150
    • /
    • 2006
  • This study examines whether the reinforcement theory would be effectively applied to teaching assistant robots between a robot and a student in the same way as it is applied to teaching methods between a teacher and a student. Participants interact with a teaching assistant robot in a 3 (types of robots: positive reinforcement vs. negative reinforcement vs. both reinforcements) by 2 (types of participants: honor students vs. backward students), within-subject experiment. Three different types of robots, such as 'Ching-chan-ee' which gives 'positive reinforcement', 'Um-bul-ee' which gives 'negative reinforcement', and 'Sang-bul-ee' which gives both 'positive and negative reinforcement' are designed based on the reinforcement theory and the token reinforcement system. Participants' task performance and reaction rate are measured according to the types of robots and the types of participants. In task performance, the negative reinforcement robot is more effective than the other two types, but regarding the number of stimulus, the less the stimulus is, the more effective the task performance is. Also, participants showed the highest reaction rate on the negative reinforcement robot which implies that the negative reinforcement robot is most effective to motivate students. The findings demonstrate that the participants perceive the teaching assistant robot not as a toy but as a teaching assistant and the reinforcement interaction is important and effective for teaching assistant robots to motivate students. The results of this study can be implicated as an effective guideline to interaction design of teaching assistant robots.

  • PDF

Position-Based Force Control Application of a Mobile Robot with Two Arms (두 팔이 달린 이동 로봇의 위치기반 힘 제어응용)

  • Ahn, Jae Kook;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.315-321
    • /
    • 2013
  • This paper presents the position-based force control application of a mobile manipulator. The mobile manipulator consists of two six DOF manipulators and a mobile robot. Kinematics of the robot is analyzed and simulated to validate the analysis. A position-based force control technique is applied to the robot by adding an outer loop to interact with the environment. Experimental studies of force control applications of robot arm and interaction with a human operator are conducted. Experimental results show that the robot arm is well regulated to follow the desired force.

Evaluating Impressions of Robots According to the Robot's Embodiment Level and Response Speed (로봇의 외형 구체화 정도 및 반응속도에 따른 로봇 인상 평가)

  • Kang, Dahyun;Kwak, Sonya S.
    • Design Convergence Study
    • /
    • v.16 no.6
    • /
    • pp.153-167
    • /
    • 2017
  • Nowadays, as many robots are developed for desktop, users interact with the robots based on speech. However, due to technical limitations related to speech-based interaction, an alternative is needed. We designed this research to design a robot that interacts with the user by using unconditional reflection of biological signals. In order to apply bio-signals to robots more effectively, we evaluated the robots' overall service evaluation, perceived intelligence, appropriateness, trustworthy, and sociability according to the degree of the robot's embodiment level and the response speed of the robot. The result showed that in terms of intelligence and appropriateness, 3D robot with higher embodiment level was more positively evaluated than 2D robot with lower embodiment level. Also, the robot with faster response rate was evaluated more favorably in overall service evaluation, intelligence, appropriateness, trustworthy, and sociability than the robot with slower response rate. In addition, in service evaluation, trustworthy, and sociability, there were interaction effects according to the robot's embodiment level and the response speed.

Dynamic Emotion Model in 3D Affect Space for a Mascot-Type Facial Robot (3차원 정서 공간에서 마스코트 형 얼굴 로봇에 적용 가능한 동적 감정 모델)

  • Park, Jeong-Woo;Lee, Hui-Sung;Jo, Su-Hun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.282-287
    • /
    • 2007
  • Humanoid and android robots are emerging as a trend shifts from industrial robot to personal robot. So human-robot interaction will increase. Ultimate objective of humanoid and android would be a robot like a human. In this aspect, implementation of robot's facial expression is necessary in making a human-like robot. This paper proposes a dynamic emotion model for a mascot-type robot to display similar facial and more recognizable expressions.

  • PDF

Human Robot Interaction via Wearable Robot

  • Kobayashi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.49.5-49
    • /
    • 2002
  • $\textbullet$ Developing "muscle shit" providing muscular support $\textbullet$ Based on a new concept: wearable robot $\textbullet$ Be applicable directly to human $\textbullet$ McKibben artificial muscles are sewn into a garment

  • PDF

Analysis on Children Robot Interaction with Dramatic Playes for Better Augmented Reality (어린이 극놀이 증강현실감을 위한 아동로봇상호작용 분석)

  • Han, Jeong-Hye
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.531-536
    • /
    • 2016
  • This study highlights the effectiveness of analyzing the feelings children have when interacting with robots in a dramatic play setting using augmented reality in Human Robot Interaction (HRI). Existing dramatic play activities using robots by QR-markers were edited, and their weaknesses have been corrected so that children could interact more effectively with robots. Additionally, children's levels of interest and engagement in dramatic play activities, the accuracy of robotic props, and the smartness of robots were analyzed throughout children's interactions during such activities using augmented reality. Younger participants were more likely to find robots interesting and intelligent, and participants with no previous experience with robots had relatively higher levels of interest in robots and tended to notice changes in robots' costumes.