• 제목/요약/키워드: Robot Design

검색결과 2,394건 처리시간 0.033초

새로운 구조의 유연한 배관탐사 로봇 설계 (Design of a New Flexible In-pipe Inspection Robot)

  • 최형식;김동호;김동현;이종훈;황광일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.175-183
    • /
    • 2008
  • In this paper, a new in-pipe inspection robot was developed for inspecting a large number of circular pipe insides of the sea plant, ships, and buildings. A new pressure generation system was devised to inspect circular pipes with different diameters and to move up and down slant or perpendicular slopes inside of the pipe. Also, a design method was analyzed to decide the capacity of driving motor for the robot if the mass and maximum velocity of the robot are identified. According to the design specification, a robot was developed and was tested to verify the performance of the pressure generation system. For tests, a control system was developed.

On Design of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Uchikado, Shigeru;Morita, Masahiko;Osa, Yasuhiro;Mabuchi, Tesuo;Tanya, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.23.2-23
    • /
    • 2001
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

복합 재난을 위한 장갑형 로봇의 차체 설계 (Vehicle Body Design of Armored Robot for Complex Disaster)

  • 박상현;김무림;김영렬;김도익;김준식;신동빈;서진호
    • 로봇학회논문지
    • /
    • 제13권4호
    • /
    • pp.248-255
    • /
    • 2018
  • In this paper, a design for a vehicle body of an armored robot for complex disasters is described. The proposed design considers various requirements in complex disaster situations. Fire, explosion, and poisonous gas may occur simultaneously under those sites. Therefore, the armored robot needs a vehicle body that can protect people from falling objects, high temperature, and poisonous gas. In addition, it should provide intuitive control devices and realistic surrounding views to help the operator respond to emergent situations. To fulfill these requirements of the vehicle body, firstly, the frame was designed to withstand the impact of falling objects. Secondly, the positive pressure device and the cooling device were applied. Thirdly, a panoramic view was implemented that enables real-time observation of surroundings through a number of image sensors. Finally, the cockpit in the vehicle body was designed focused on the manipulability of the armored robot in disaster sites.

근골격계 질환 예방을 위한 조선용 작업 지원 로봇의 개념 설계 (Conceptual Design of a Work Support Robot for the Prevention of Musculoskeletal Disorders in Shipbuilding)

  • 노명일;이규열;이정우;이재승
    • 한국CDE학회논문집
    • /
    • 제14권2호
    • /
    • pp.77-86
    • /
    • 2009
  • During manual work in shipbuilding such as blasting, grinding, and so on, a large force is acted on the body of a worker. As a result, this work induces musculoskeletal disorders of the worker and it also induces severe social problems. To solve this problem, we are developing a work support robot for the prevention of musculoskeletal disorders in shipbuilding. In this study, a result of conceptual design of this robot is presented. A worker can perform the blasting work with a small force using this robot which can lessen the force acting on the body of the worker.

발가락과 뒤꿈치 조인트를 갖는 유연한 로봇 발 설계 (Design of a Flexible Robot Foot with Toes and Heel Joints)

  • 박진희;김현술;권상주
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.446-454
    • /
    • 2011
  • In terms of the anatomy and mechanics of the human foot, a flexible robot foot with toes and heel joints is designed for a bipedal walking robot. We suggest three design considerations in determining foot design parameters which are critical for walking stability. Those include the position of the frontal toe, the stiffness of toes and heels, and the position of the ankle joint. Compared with the conventional foot with flat sale, the proposed foot is advantageous for human-like walking due to the inherent structural flexibility and the reasonable parameter values. Simulation results are provided to determine the design parameters and also show that the proposed foot enables smaller energy consumption.

Design of an Autonomous Eating Pet Robot

  • Park, Ch.S.;Choi, B.J.;Park, S.H.;Lee, Y.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.855-858
    • /
    • 2003
  • The trends of recent developed a pet robot which interacts with people are increased gradually. There are a few pet robots that are a robot dog, robot cat, and robot fish. The pet robot is featured that it is possible to sympathize and give pleasure to human. The pet robots express delight, sorrow, surprise, and hunger through the artificial intelligence. Previously, the pet robot has to exchange the battery when it is exhausted. Commercialized robots have a self-recharging function, which express hunger. Robot dog AIBO, SONY in Japan, checks the battery for expressing hunger. They find an energy station for recharge. While operation time of AIBO is 1 hour 30 minutes, recharging time is 2 hours. Recharging time is longer than operation time. During the recharge, they don't operate. We obtain a motivation for eating the battery when find the problem. In this paper, introduce an Autonomous Eating Pet Robot and propose a design for realization. The Autonomous Eating Pet Robot has a function that is the most basic instinct that is finding a food and evacuating.

  • PDF

동역학 모델을 활용한 서비스용 지능형 로봇의 현가시스템 설계 최적화 (Design optimization of intelligent service robot suspension system using dynamic model)

  • 최성훈;박태원;이수호;정성필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.565-570
    • /
    • 2008
  • Recently, the intelligent service robot is applied for the purpose of guiding the building or providing information to the visitors of the public institution. The intelligent robot which is on development has a sensor to recognize its location at the bottom of it. Four wheels which are arranged in the form of a lozenge support the weight of the components and structures of the robot. The operating environment of this robot is restricted at the uneven place because the driving part and internal structure is designed in one united body. The impact from the ground is transferred to the internal equipments and structures of the robot. This continuous impact can cause the unusual state of the precise components and weaken the connection between each structural part. In this paper, a suspension system which can be applied to the intelligent robot is designed. The dynamic model of the robot is created, and the driving characteristics of the actual robot and the robot with suspension are compared. The road condition which the robot can operate is expanded by the application of the suspension system. Additionally, the suspension system is optimized to reduce the impact to the robot components.

  • PDF

미션 시나리오기반 장갑형 로봇시스템 유압매니퓰레이터 설계 (Mission Scenario-based Design of Hydraulic Manipulators for Armored Robot Systems)

  • 정동탁;김철;김주현;서진호;김무림
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.51-60
    • /
    • 2017
  • In this study to develop disaster response robot in complex disaster site, we present the design of hydraulic manipulators for armored robot systems. To this end, we performed voice of customer researches with firefighters and rescue personnel. We created and analyzed the mission scenario of firefighters and rescue personnel in complex disaster situations, and derived the required functions of the robot to successfully perform missions. A heavy-duty, heat resistant, dexterous hydraulic robot manipulators is designed to realize the required functions. The designed robot has been verified through simulations and analysis in terms of the working area of the robot, actuating torques, and temperature analysis.

Real-Time System Design and Point-to-Point Path Tracking for Real-Time Mobile Robot

  • Wang, F.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.162-167
    • /
    • 2003
  • In this paper, a novel feasible real-time system was researched for a differential driven wheeled autonomous mobile robot so that the mobile robot can move in a smooth, safe and elegant way. Least Square Minimum Path Planning was well used for the system to generate a smooth executable path for the mobile robot, and the point-to-point tracking algorithm was presented as well as its application in arbitrary path tracking. In order to make sure the robot can run elegantly and safely, trapezoidal speed was integrated into the point-to-point path tracking algorithm. The application to guest following for the autonomous mobile robot shows its wide application of the algorithm. The novel design was successfully proved to be feasible by our experiments on our mobile robot Interactive Robot Usher (IRU) in National University of Singapore.

  • PDF

실험계획법에 의한 휴머노이드 발의 민감도 해석 및 최적화 (Optimization and sensitivity analysis of the humanoid robot's foot using the design of experiments)

  • 윤지원;박태원;정성필;박중경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.933-938
    • /
    • 2007
  • These days, up-to-date humanoid robots are continuously developed. Among them, Qrio, Asimo[1,2] are famous for its unique walking technology and natural movement. These robots could show manufacturers' technological improvement and leave a good impression to the customer. In accordance with global trends, Samsung is also producing humanoid robot. The humanoid robot, however, could walk like a human compared to the industrial robot fixed in the factory. This feature could cause another dynamic effect while walking. In this paper, the robot's feet were examined to find out parameters that affect stability of the humanoid robot's feet. With the sensitivity analysis, the optimization procedure in design of experiments finds the most suitable performance of robot. Maximum deflection of the frame upon various cases was minimized, and rubber coefficients for shock absorption were optimized.

  • PDF