• Title/Summary/Keyword: Robot Controller

Search Result 1,554, Processing Time 0.031 seconds

Fuzzy-supervised nonlinear $H_{\infty}$ controller design for robot manipulator (로봇 매니퓰레이터를 위한 퍼지 감독자 비선형 $H_{\infty}$ 제어기의 설계)

  • 박광성;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.143-146
    • /
    • 1997
  • In this paper, we propose a fuzzy-supervised nonlinear H$_{\infty}$ controller which guarantees the robustness and has exact tracking performance for robot manipulator with system parameter uncertainty and exogenous disturbance, The proposed controller which is based on robotic H$_{\infty}$ controller has fuzzy supervisor which decides the optimal control input weighting value through fuzzy making-decision process. Owing to the fuzzy supervisor, The proposed controller can take the optimal control input. Then, we will apply the proposed controller to rigid robot manipulator to verify the performance of our controller.r.

  • PDF

A controller design for direct drive arm robot using 32-Bit (MC 68020) CPU (32비트(MC 68020) CPU를 사용한 직접구동방식 로보트의 제어기 설계)

  • 이주장;윤형우;곽윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.82-85
    • /
    • 1988
  • This paper are the manufacture of controller of direct drive arm robot using 32 bit CPU(MC 69020). The work would draw on KIT of Robotics Laboratory whose extensive experience in 16 bit CPU Controller(MC 68008) in addition to the WHILE languages. We found that this controller is good for the direct drive arm robot controller for the use of self-tuning algorithms and real time control.

  • PDF

Integrated robot control system for off-line teaching (오프라인 교시작업을 위한 통합 로봇제어시스템의 구현)

  • 안철기;이민철;이장명;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.503-506
    • /
    • 1996
  • An integrated Robot control system for SCARA robot is developed. The system consists of an off-line programming(OLP), software and a robot controller using four digital signal processor(TMS32OC50). The OLP has functions of teaching task, dynamic simulator, three dimensional animation, and trajectory planning. To develop robust dynamic control algorithm, a new sliding mode control algorithm for the robot is proposed. The trajectory tracking performance of these algorithm is evaluated by implementing to SCARA robot(SM5 type) using DSP controller which has conventional PI-FF control algorithm. To make SCARA robot operate according to off-line teaching, an interface between OLP and robot controller in the integrated system is designed. To demonstrate performance of the integrated system, the proposed control algorithm is applied to the system.

  • PDF

User-Oriented Controller Design for Multi-Axis Manipulators (다관절 머니퓰레이터의 사용자 중심 제어기 설계)

  • Son, HeonSuk;Kang, DaeHoon;Lee, JangMyung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • This paper proposes a PC-based open architecture controller for a multi-axis robotic manipulator. The designed controller can be applied for various multi-axes robotic manipulators since the motion controller is implemented on a PC with its peripheral devices. The accuracy of the controller based on the computed torque method has been measured with the dynamic model of manipulator. Since the controller is implemented in the PC-based architecture, it is free from the user circumstances and the operating environment. Dynamics of the manipulator have been compensated by the feed forward path in the inner loop and the resulting linear outer loop has been controlled by PD algorithm. Using the specialized language, it can be more efficient in programming and in driving of the multi-axis robot. Unlike the conventional controller that is used to control only a specific robot, this controller can be easily changed for various types of robots. This paper proposes a PC-based controller that has a simple architecture with its simple interface circuits than general commercial controllers. The maintenance and the performance of the controller can be easily improved for a specific robot. In fact, using a Samsung multi-axis robot, AT1, the controller performance and convenience of the PC-based controller have been verified by comparing to the commercial one.

  • PDF

A Study on the Joint Controller for a Humanoid Robot based on Genetic Algorithm (유전 알고리즘을 이용한 휴머노이드 로봇의 관절 제어기에 관한 연구)

  • Kong, Jung-Shik;Kim, Jin-Geol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.640-647
    • /
    • 2007
  • This paper presents a joint controller for a humanoid robot based on genetic algorithm. h humanoid robot has basically instability during walking because it isn't fixed on the ground. Moreover nonlinearities of the joints increase its instability. If one of them isn't satisfied, the robot may fall down at the ground during walking. To attack one of those problems, joint controller is proposed. It can perform tracking control preciously and reduce the effect of nonlinearities by gear, limitation of the input voltage, coulomb friction and so on. This controller is based on fuzzy-sliding mode controller (FSMC) and compensator and control gains are searched by a proposed genetic algorithm. It can reduce the effect by nonlinearities. Also, to improve the tracking performance, the proposed controller has motion controller. From the given controller, a humanoid robot can moved more preciously. Here, all the processes are investigated through simulations and it is verified experimentally in a real joint system for a humanoid robot.

A Novel Neural Network Compensation Technique for PD-Like Fuzzy Controlled Robot Manipulators (PD 기반의 퍼지제어기로 제어된 로봇의 새로운 신경회로망 보상 제어 기술)

  • Song Deok-Hee;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.524-529
    • /
    • 2005
  • In this paper, a novel neural network compensation technique for PD like fuzzy controlled robot manipulators is presented. A standard PD-like fuzzy controller is designed and used as a main controller for controlling robot manipulators. A neural network controller is added to the reference trajectories to modify input error space so that the system is robust to any change in system parameter variations. It forms a neural-fuzzy control structure and used to compensate for nonlinear effects. The ultimate goal is same as that of the neuro-fuzzy control structure, but this proposed technique modifies the input error not the fuzzy rules. The proposed scheme is tested to control the position of the 3 degrees-of-freedom rotary robot manipulator. Performances are compared with that of other neural network control structure known as the feedback error learning structure that compensates at the control input level.

Tip Position Control of Flexible Robot Manipulators Using 2-DOF Controller with Sliding Mode (슬라이딩 모드를 가진 2-자유도 제어기를 이용한 유연한 로봇 조작기의 끝점 위치 제어)

  • 신효필;이종광;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.471-477
    • /
    • 2000
  • The position control accuracy of a robot arm is significantly deteriorated when a long arm robot is operated at a high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system should be designed with its elastic modes taken into account. In this paper, the tip position control scheme of a one-link flexible manipulator using 2-DOF controller with sliding mode is presented. The robot consists of a flexible arm manufactured with a thin aluminium plate, an AC servo motor with a harmonic drive for speed reduction, an optical encoder and a CCD camera as a vision sensor for on-line measuring the tip deflection of the flexible m. Simulation and experimental results of the flexible manipulator with a proposed controller are provided to show the effectiveness of the controller.

  • PDF

A Learning Controller for Gate Control of Biped Walking Robot using Fourier Series Approximation

  • Lim, Dong-cheol;Kuc, Tae-yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.85.4-85
    • /
    • 2001
  • A learning controller is presented for repetitive walking motion of biped robot. The learning control scheme learns the approximate inverse dynamics input of biped walking robot and uses the learned input pattern to generate an input profile of different walking motion from that learnt. In the learning controller, the PID feedback controller takes part in stabilizing the transient response of robot dynamics while the feedforward learning controller plays a role in computing the desired actuator torques for feedforward nonlinear dynamics compensation in steady state. It is shown that all the error signals in the learning control system are bounded and the robot motion trajectory converges to the desired one asymptotically. The proposed learning control scheme is ...

  • PDF

Trajectory Controller Design of Mobile Robot Systems based on Back-stepping Procedure (백스테핑을 이용한 이동 로봇의 경로 제어기의 설계)

  • 이기철;이성렬;류신형;고재원;박민용
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.23-26
    • /
    • 2000
  • Generally, the wheel-driven mobile robot systems, by their structural property, have nonholonomic constraints. These constraints are not integrable and cannot be written as time derivatives of some functions with respect to the generalized coordinates. Hence, nonlinear approaches are required to solve the problems. In this paper, the trajectory controller of wheeled mobile robot systems is suggested to guarantee its convergence to reference trajectory. Design procedure of the suggested trajectory controller is back-stepping scheme which was introduced recently in nonlinear control theory. The performance of the proposed trajectory controller is verified via computer simulation. In the simulation, the trajectory controller is applied to differentially driven robot system and car-like mobile robot system on the assumption that the trajectory planner be given.

  • PDF

Development of robot control system using DSP (DSP를 이용한 로보트 제어시스템 개발)

  • Lee, Bo-Hee;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.50-57
    • /
    • 1995
  • In this paper, the design and the implementation of the controller for an articulate robot, which is developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies structures by the time-division control with TMS320C31 DSP chip. The method of control is based on the fuzzy-compensated PID control with scale factor, which compensates for the influence of load variation resulting from the various postures of the robot with conventional PID scheme. The application of the proposed controller to the robot system with DC servo-motors shows some excellent control capabilities. Also, the response characteristics of system for the various trajectory commands verify the superiority of the controller.

  • PDF