• Title/Summary/Keyword: Robot Control System

Search Result 2,879, Processing Time 0.034 seconds

A Study on Technique of Navigation with Power-Reflected of the Walker in the Indoor Environment

  • Kim, Min-Sik;Kwon, Hyouk-Gil;Ryu, Je-Goon;Shim, Hyeon-Min;Lee, Eung-Hyuk;Shim, Jea-Hong;Lee, Sang-Moo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.957-962
    • /
    • 2005
  • Today, the elderly is increasing gradually in the Republic of Korea society and this problem will be more serious in the near future. Therefore, engineering support for aged people is required. We are establishing a new field of healthcare engineering for elderly people and aiming to support for aged people and disabled people using adaptive control and instrument technology. In this paper, the goal is to implement the shared control of a robot mobility aid for the elderly. As using this type of assistive technology to be useful by its intended user community, it supports elderly people and handicapped people to live independently in their private homes. The interface transforms the force applied by the user into the robot's motion. Devices like buttons, joysticks, and levers already exist for relaying user input; however, they require hand displacement that would loosen or otherwise release the user's hold. Such interfaces make operation very difficult and potentially unsafe. Therefore, we propose a shared control system. It's safe more than joysticks and buttons. The shared control is a means of registering the user's intention through physical interaction. It's an important component in the development of robotic elderly assistant. The concept of shared control describes a system which is two or more independent control systems. We are using that the three component blocks consist of pressure sensor (flexible force sensor), circuit of measurement and transfer function. Experimental trials of this paper have been tested at the indoor environment. The robot is able to know the user intended direction through haptic device were logged along with the robot's force sensor.

  • PDF

Dynamic Compliance and its Compensation Control of HIVC Force Control System

  • Ba, Kai-xian;Yu, Bin;Li, Wen-feng;Wang, Dong-kun;Liu, Ya-liang;Ma, Guo-liang;Kong, Xiang-dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.1008-1020
    • /
    • 2018
  • In this paper, the dynamic compliance and its compensation control of the force control system on the highly integrated valve-controlled cylinder (HIVC), the joint driver of the hydraulic drive legged robot, is researched. During the robot motion process, the outer loop dynamic compliance control is applied on the base of hydraulic control inner loop and most inner loop control are the force or torque closed loop control. While the dynamic compliance control effectiveness of outer loop can be affected by the inner loop self-dynamic-compliance. Based on this problem, the dynamic compliance series composition theory of HIVC force control system as well as the analysis of its self-dynamic-compliance is proposed. And then the paper comes up with the compliance-enhanced control, which is a compound compensation control method of dynamic compliance with multiple series branches. Finally, the experiment results indicate that the control method mentioned above can enhance the dynamic compliance of HIVC force control system observably. This provides the compensation control method of inner loop dynamic compliance for the outer loop compliance control requiring the high accuracy and high robustness for the robot.

Implementation of Mobile Robot Platform Based on Attitude Reference System for Pan-tilt Camera Control (팬틸트 카메라 제어를 위한 자세측정 장치 기반 이동로봇플랫폼 구현)

  • Park, Se-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.201-206
    • /
    • 2016
  • Aircraft have a cross axis of the three each other for maintenance of aircraft position. It is called roll axis, pitch axis and yaw axis. Attitude reference system is a sensor for detecting a change of the three axis. In this paper, mobile robot platform install part of Pan-tilt and HMD attitude reference system, because of we use control camera. The acceleration sensor is very weak a lot of noise to vibration, also problem with data from process of mapping to the data problems to arise. However to solve this problem, we removed the average filter and Cosine Interpolation for Pan-tilt. Using capacity evaluation for outdoor environment for we are proposing. Mobile robot has HMD and equipped Pan-tilt. We control mobile robot camera. In this experiment result is little bit delay happening, however Pan-tilt camera is relatively stable control checking. Also, we will checking any terrain and slopes is no problem for mobile robot driving skills.

Network human-robot interface at service level

  • Nguyen, To Dong;Oh, Sang-Rok;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1938-1943
    • /
    • 2005
  • Network human-robot interface is an important research topic. In home application, users access the robotic system directly via voice, gestures or through the network. Users explore a system by using the services provided by this system and to some extend users are enable to participate in a service as partners. A service may be provided by a robot, a group of robots or robots and other network connected systems (distributed sensors, information systems, etc). All these services are done in the network environment, where uncertainty such as the unstable network connection, the availability of the partners in a service, exists. Moreover, these services are controlled by several users, accessing at different time by different methods. Our research aimed at solving this problem to provide a high available level, flexible coordination system. In this paper, a multi-agent framework is proposed. This framework is validated by using our new concept of slave agents, a responsive multi-agent environment, a virtual directory facilitator (VDF), and a task allocation system using contract net protocol. Our system uses a mixed model between distributed and centralized model. It uses a centralized agent management system (AMS) to control the overall system. However, the partners and users may be distributed agents connected to the center through agent communication or centralized at the AMS container using the slave agents to represent the physical agents. The system is able to determine the task allocation for a group of robot working as a team to provide a service. A number of experiments have been conducted successfully in our lab environment using Issac robot, a PDA for user agent and a wireless network system, operated under our multi agent framework control. The experiments show that this framework works well and provides some advantages to existing systems.

  • PDF

A study on the PSD sensor system for localization of mobile robots (이동 로봇의 위치측정을 위한 PSD 센서 시스템에 관한 연구)

  • Ro, Young-Shick
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.330-336
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robots work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF

Development of 3D Off-line Simulator for Industrial Robots (산업용 로봇의 3차원 오프라인 시뮬레이터 개발)

  • 김홍래;신행봉;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1731-1734
    • /
    • 2003
  • We propose a unmaned integrating control system based-on Windows XP version Off-Line Programming System which can simulate a Robot model in 3D Graphics space in this paper. The robot with 4 and 6 axes modeled SM5 and AM1 respectively were adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed off-line program. The interface between users and the off-line programming system in the Windows XP's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

Development of Off-line Simulator for Robots with Auto-teaching (자동교시기능을 갖는 로봇의 3차원 오프라인 시뮬레이터 개발)

  • 신행봉;정동연;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.319-326
    • /
    • 2003
  • We propose a unmaned integrating control system based-on Windows XP version Off-Line Programming System which can simulate a Robot model in 3D Graphics space in this paper. The industrial robot with 4 and 6 axes modeled SM5 and AMI respectively were adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed off-line program. The interface between users and the off-line programming system in the Windows XP's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

Automatic Derivation of Explicit Robot Programs from Task-Level Commands (고수준 명령어로부터 명시적 로봇 프로그램 자동 유도방법)

  • Seo, Yoon-Ho;Cheong, Deok-Ho
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.305-311
    • /
    • 1999
  • Robot task program is needed to control and manage a Robot without explicitly describing the robot program by user which includes commands, procedures, geometric and signal data in the detail level. To use the Robot task program, a computer system is required to convert the Robot task into the Robot program, which can be understood by the Robot. In this paper, the systemic method for automatic generation of explicit Robot programs (ERP) from task-level commands is described. Specifically, a 3-step procedure including Robot task decomposition, task synchronization and ERP generation is presented.

  • PDF

A Remote Control of 6 d.o.f. Robot Arm Based on 2D Vision Sensor (2D 영상센서 기반 6축 로봇 팔 원격제어)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.933-940
    • /
    • 2022
  • In this paper, the algorithm was developed to recognize hand 3D position through 2D image sensor and implemented a system to remotely control the 6 d.o.f. robot arm by using it. The system consists of a camera that acquires hand position in 2D, a computer that controls robot arm that performs movement by hand position recognition. The image sensor recognizes the specific color of the glove putting on operator's hand and outputs the recognized range and position by including the color area of the glove as a shape of rectangle. We recognize the velocity vector of end effector and control the robot arm by the output data of the position and size of the detected rectangle. Through the several experiments using developed 6 axis robot, it was confirmed that the 6 d.o.f. robot arm remote control was successfully performed.

Selective Activation for Global Ultrasonic System (전역 초음파 시스템의 선택적 활성화)

  • Kim Jin-Won;Kim Yong-Tae;Hwang Samuel B.;Yi Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.955-961
    • /
    • 2006
  • The global ultrasonic system for the self-localization of a mobile robot consists of several ultrasonic transmitters fixed at some reference positions in the global coordinates of robot environment. By activating the ultrasonic transmitters, the mobile robot is able to get the distance to the ultrasonic transmitters and compute its own position in the global coordinate. Due to the limitation on the ultrasonic signal strength and beam width as well as the environmental obstacles however, the ultrasonic signals from some generator may not be transmitted to the robot. Thus, instead of activating the all ultrasonic transmitters, it is necessary to select some ultrasonic generators to activate based on the current robot position. In this paper, we propose a selective activation algorithm for self-localization with the global ultrasonic system. The selective activation algorithm gets the meaningful ultrasonic data at every sampling instants, which results in the faster and more accurate response of the self-localization than the conventional sequential activation. Through the self-localization and path following control, we verify the effectiveness of the proposed selective activation algorithm.