• Title/Summary/Keyword: Robot Control System

Search Result 2,879, Processing Time 0.033 seconds

Design and Implementation of a Virtual Robot Education System (가상 로봇 교육 시스템 설계 및 구현)

  • Hongyu, Xiong;So, Won-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.108-115
    • /
    • 2011
  • Virtual Robot Education System (VRES), which is for programming education with a Lego Mindstorm NXT robot, is designed and implemented. Through this system, program learners can edit source code, compile, download it into the robot, and run their executive program. In order to observe it, the system includes web cameras and provide monitoring services. Thus, students are able to verify the operation of robot into which they download their program in detail and to debug if necessary. In addition, we design a new simple user-friendly programming language and a corresponding compiler for it. With those tools, learner can more easily create programs for NXT robot and test them than Java language. A educator can control and manage the robot for the subject of a class with direct control mode of our system. Therefore, the proposed system is able to support students to learn robot programming during or after regular classes with web browsers through Internet.

Robot off-line programming system for polishing task (금형 연마용 로보트의 Off-Line Programming System)

  • 국금환;최기봉
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.41-46
    • /
    • 1990
  • In the existing robot programming methods, off-line method becames important role of programming because of improvement of hardware and software of PC. The purpose of this study is to develop practical robot programming system for polishing task using PC. In the first place, we have investigated the existing robot programming systems, and derived the requirement of this programming system from the existing systems. And we have decided the structure of this system. After that, we have developed this system. Using Windows software, this programming system has man/machine interface function. So users can use easily and quickly.

  • PDF

A new derivation method of the generalized Jacobian matrix of a space robot and its application to a multi-robot system

  • Kobayashi, Jun;Nakatsuka, Keiichi;Katoh, Ryozo;Ohkawa, Fujio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.799-802
    • /
    • 1997
  • This paper deals with a new method to derive the Generalized Jacobian Matrix of a space robot. In a conventional method to derive the Generalized Jacobian Matrix, generalized coordinates select Joint angles and a space robot body's position and attitude angle. But, in this paper, we select position and attitude angle of the end-effector or the handled floating object as generalized coordinates. Then, we can derive the Generalized Jacobian Matrix of the system which consists of several space robots and a handled floating object. Moreover control methods operated by only one space robot can be easily extended to the cases of cooperation task by several space robots. Computer simulations show that the Generalized Jacobian Matrix derived here is effective.

  • PDF

A study on the development of polishing robot system attached to machining center for curved surface die (머시닝센터 장착형 곡면금형 연마용 로봇 시스템 개발에 관한 연구)

  • 하덕주;이민철;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1312-1315
    • /
    • 1996
  • Polishing work for a curved surface die demands simple and repetitive operations and requires much time while it also demands high precision. Therefore it is operated by skilled worker in handiwork. But workers avoid polishing work gradually because of the poor environments such as dust and noise. In order to reduce the polishing time and to alleviate the problem of shortage of skilled workers, researches for automation of polishing have been pursued in the developed countries such as Japan. In this research we develop a polishing robot with 2 degrees of freedom motion and pneumatic system, and attach it to machining center with 3 degrees of freedom to form an automatic polishing system which keeps the polishing tool vertically on the surface of die and maintains constant pneumatic pressure. The developed polishing robot is controlled by real time sliding mode control using DSP(digital signal processor). A synchronization between machining center and polishing robot is accomplished by using M code of machining center. A performance experiment for polishing work is executed by the developed polishing robot.

  • PDF

A Workspace Analysis Method of Multi-Legged Walking Robot in the Velocity Domain (다족 보행로봇의 속도작업공간 해석)

  • 이지홍;전봉환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.477-483
    • /
    • 2002
  • This paper deals with a workspace analysis of multi-legged walking robots in velocity domain(velocity workspace analysis). Noting that when robots are holding the same object in multiple cooperating robotic arm system the kinematic structure of the system is basically the same with that of a multi-legged walking robot standing on the ground, we invented a way ot applying the technique for multiple arm system to multi-legged walking robot. An important definition of reaction velocity is made and the bounds of velocities achievable by the moving body with multi-legs is derived from the given bounds on the capabilities of actuators of each legs through Jacobian matrix for given robot configuration. After some assumption of hard-foot-condition is adopted as a contact model between feet of robot and the ground, visualization process for the velocity workspace is proposed. Also, a series of application examples will be presented including continuous walking gaits as well as several different stationary posture of legged walking robots, which validate the usefulness of the proposed technique.

The Role of Kinematics in Robot Development (로봇발전과 기구학의 역할)

  • Youm, Youngil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.333-344
    • /
    • 2014
  • This is the survey paper on the role of kinematics in robot development. The robot is considered as a form of mechanical systems which includes closed-chain loop system, open-chain loop system and closed and open switching system. To analyze these systems, kinematic notations has been developed in kinematics of mechanical theory since 1955 and has been applied in robotics. Several kinematic notations including Denavit-Hartenberg notations have been reviewed. The status of development of the spherical motor which has a great impact on the future robot advancement has reviewed, and research activity on a spherical motor and its application to 3-D spatial mechanisms at UNIST is introduced. For the open and closed switching mechanical systems, the bipedal robots' walking theories using Zero Moment Point are reviewed. And current status regarding bipedal robots based on newly developed passive dynamic walking theory is reviewed with the research activity at UNIST on this subject.

Development of an In-Pipe Inspection and Cleaning Robot (배관 검사 및 청소 로봇의 개발)

  • Choi, Hyeung-Sik;Na, Won-Hyun;Kang, Dong-Wan;Kang, Hyung-Suk;Jeon, Ji-Gwang;Kim, Hyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.662-671
    • /
    • 2009
  • In this paper, a robot was developed for in-pipe cleaning and inspecting a large number of circular in-pipes of sea plants, ships, and buildings. A pressure generation mechanism was devised to inspect circular in-pipes with different diameters and to move up and down slant or perpendicular slopes in-pipes. For inspection of the dark inner side of the pipe, a light system using LED which dissipats small electricity was developed. Also, a design method was analyzed to decide the capacity of driving motor for the robot when the mass and maximum velocity of the robot are identified. The robot developed based on the design specification, was tested to verify the performance of the pressure generation mechanism. In addition, a control system was developed for the test.

Development of cooperating robot arms with ultra light weight (초경량 양팔로봇의 개발)

  • Choi H.S.;Moon W.J.;Kim B.G.;Lim K.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.67-68
    • /
    • 2006
  • In this paper, a new revolute cooperating robot arms with 12 d.o.f was developed for autonomous moving robots. The robot ann was designed to have the load capacity of 10 Kg. For this, a new joint actuator based on the fourbar link mechanism was employed. As a control system for the robot arm, a distributed control system was developed composed of the main controller and five motor controller for the ann joints. The main controller and the motor controller were developed using the ARM microprocessor and the TMS320c2407 processor, respectively. To validate the performance of the robot system, an experiment to support 10 Kg payload was performed.

  • PDF

A Study on Obstacle Avoidance Technology of Autonomous Treveling Robot Based on Ultrasonic Sensor (초음파센서 기반 자율주행 로봇의 장애물 회피에 관한 연구)

  • Hwang, Won-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 2015
  • This paper presents the theoretical development of a complete navigation problem of a nonholonomic mobile robot by using ultrasonic sensors. To solve this problem, a new method to computer a fuzzy perception of the environment is presented, dealing with the uncertainties and imprecision from the sensory system and taking into account nonholonomic constranits of the robot. Fuzzy perception, fuzzy controller are applied, both in the design of each reactive behavior and solving the problem of behavior combination, to implement a fuzzy behavior-based control architecture. The performance of the proposed obstacle avoidance robot controller in order to determine the exact dynamic system modeling system that uncertainty is difficult for nomadic controlled robot direction angle by ultrasonic sensors throughout controlled performance tests. In additionally, this study is an in different ways than the self-driving simulator in the development of ultrasonci sensors and unmanned remote control techniques used by the self-driving robot controlled driving through an unmanned remote controlled unmanned realize the performance of factory antomation.

Development of Robotic Tools for Chemical Coupler Assembly

  • Jeong, Sung-Hun;Kim, Gi-Seong;Park, Shi-Baek;Kim, Han-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_1
    • /
    • pp.953-959
    • /
    • 2022
  • In this paper, the design result of robotic tools and the development of robot control system for chemical coupler assembly are presented. This research aims to eliminate the risk of chemicals exposed to human operators by developing the robotic tools and robot automation system for chemical tank lorry unloading that were done manually. Due to tight tolerance between couplers, even small pose error may result in very large internal force. In order to resolve the problem, the 6-axis compliance device is employed, which can provide not only enough compliance between couplers but also F/T sensing. The 6-axis compliance device having large force and moment capacity is designed. A simple linear gripper with rack-and-pinion is designed to grasp two sizes of couplers. The proposed robot automation system consists of 6-DOF collaborative robot with offset wrist, 6-axis compliance device with F/T sensing, linear gripper, and two robot visions.