• Title/Summary/Keyword: Robot Control System

검색결과 2,876건 처리시간 0.029초

자율주행 로봇의 외부환경 이해를 위한 기하학적인 빌딩 분석 (Geometrical Building Analysis for Outdoor Environment Understanding of Autonomous Navigation Robot)

  • 김대년;찐황헌;조강현
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.277-285
    • /
    • 2010
  • This paper describes an approach to analyze geometrical information of building images for understanding outdoor environment of autonomous navigation robot. Line segments and color information are used to classily a building with the other objects such as sky, trees, and roads. The line segments and their two neighboring regions are extracted from detected edges in image. The model of line segment (MLS) consists of color information of neighbor regions. This model rules out the line segments of non-building face. A building face converges into dominant vanishing points (DVPs) which include one vertical point and one of five horizontal points in maximum. The intersection of vertical and horizontal lines creates a facet of building. The geometrical characteristics such as the center coordinates, area, aspect ratio and aligned coexistence are used for extracting the windows in the building facet. In experiments, 150 building faces and 1607 windows were detected from the database of outdoor environment. We found that this result shows 94.46% detection rate. These experimental images were all taken in Ulsan metropolitan city in Korea under difference of viewpoints, daytime, camera system and weather condition.

어라운드 뷰 기반의 원격 로봇 제어 시스템 (Remote Robot Control System based on Around View)

  • 김효빈;정우성;전세웅
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.449-452
    • /
    • 2012
  • 본 논문에서는 인간이 환경에 대한 상황을 직접적으로 파악할 수 있는 시각 정보를 제공하기 위해 다중 카메라를 이용한 사용자 시각기반 어라운드 뷰를 개발하였다. 4대의 하향식 경사 카메라를 통하여 영상을 획득하고 켈리브레이션한다. 렌즈의 왜곡을 보정하고 호모그라피 행렬을 계산하여 지표면과 수평이 되는 관점으로 영상을 변환한다. 그 결과 사용자에게 종합적 상황정보 획득이 용이하도록 정보화하기 위한 위성 영상 관점의 정보를 획득할 수 있다. 그리고 4대의 카메라를 동시에 사용하기 위한 하드웨어적 한계를 극복하고자 영상처리가 가능한 임베디드 카메라 모듈을 개발하였다. 사용자-로봇 상호작용을 위해 버튼 및 조이스틱과 같은 기계적 입력장치를 사용하지 않고 사용자의 자연스러운 제스처를 통하여 제어 명령을 입력할 수 있는 터치 패드를 사용하여 사용자 인터페이스를 구축하였다. 개발한 시스템은 시 공간적 한계를 극복하고 원격에서 로봇의 상황정보를 획득하여 사용자 친화적인 로봇제어를 할 수 있다. 위의 내용들을 검증하기 위하여 같은 상황 환경에서의 기존의 시스템과 비교 실험을 진행하였고 실험 결과를 통하여 제안한 시스템의 효용성을 검증하였다.

  • PDF

Study on Following of Parmeter ${\alpha}$ of 2-DOF PID Controller Using Fuzzy Algorithm

  • Lee, Sang-Min;Cho, Yong-Sung;Park, Jong-Oh;Choo, Yeon-Gyu;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.307-311
    • /
    • 2003
  • 2-mass system is generally used as controller of the variable-speed to transfer electromotion power to mechanical load such as industrial robot, driving parts of electric vehicle, rolling machine system of steel plant and driving parts of elevator. In this case, PI controller is often used as a velocity controller because of simplicity of system. But PI control algorithm is not enough for obtaining the control characteristics required for this system. To solve this problem, 2-mass system based on the PID controller derives the optimum PID parameters by pole assignment and estimation of the ITAE performance index. In this case, the system have tenacious properties about disturbance, but it causes extreme overshoot and vibration because of rapidly output of controller in early transient response about desired value. And if speed control system is applied by 2-DOF parameter ${\alpha}$, a temporary value, we must induce most suitable parameter by complicate pole assignment and estimation of the ITAE performance index whenever ${\alpha}$ changes. In this paper, to solve this problem we suggest control algorithm to followed exactly value of ${\alpha}$ as 2-DOF parameter by using fuzzy algorithm . So, intelligence algorithm modeled by human knowledge, experience, teachability and judgment follow exact ${\alpha}$ value and it can compose the efficient 2-DOF PID controller to improve following performance, overshoot decrease.

  • PDF

Data-Driven Kinematic Control for Robotic Spatial Augmented Reality System with Loose Kinematic Specifications

  • Lee, Ahyun;Lee, Joo-Haeng;Kim, Jaehong
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.337-346
    • /
    • 2016
  • We propose a data-driven kinematic control method for a robotic spatial augmented reality (RSAR) system. We assume a scenario where a robotic device and a projector-camera unit (PCU) are assembled in an ad hoc manner with loose kinematic specifications, which hinders the application of a conventional kinematic control method based on the exact link and joint specifications. In the proposed method, the kinematic relation between a PCU and joints is represented as a set of B-spline surfaces based on sample data rather than analytic or differential equations. The sampling process, which automatically records the values of joint angles and the corresponding external parameters of a PCU, is performed as an off-line process when an RSAR system is installed. In an on-line process, an external parameter of a PCU at a certain joint configuration, which is directly readable from motors, can be computed by evaluating the pre-built B-spline surfaces. We provide details of the proposed method and validate the model through a comparison with an analytic RSAR model with synthetic noises to simulate assembly errors.

비선형 시스템에 대한 퍼지 도달 법칙을 가지는 가변 구조 제어 (Variable structure control with fuzzy reaching law method for nonlinear systems)

  • 사공성대;이연정;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제2권4호
    • /
    • pp.279-286
    • /
    • 1996
  • In this paper, variable structure control(VSC) based on reaching law method with fuzzy inference for nonlinear systems is proposed. The reaching law means the reaching condition which forces an initial state of system to reach switching surface in finite time, and specifies the dynamics of a desired switching function. Since the conventional reaching law has fixed coefficients, the chattering can be existed largely in sliding mode. In the design of a proposed fuzzy reaching law, we fuzzify RP(representative point)'s orthogonal distance to switching surface and RP's distance the origin of the 2-dimensional space whose coordinates are the error and the error rate. The coefficients of the reaching law are varied appropriately by the fuzzy inference. Hence the state of system in reaching mode reaches fastly switching surface by the large values of reaching coefficients and the chattering is reduced in sliding mode by the small values of those. And the effectiveness of the proposed fuzzy reaching law method is showen by the simulation results of the control of a two link robot manipulator.

  • PDF

부력 및 모멘트 제어를 이용한 수중글라이더의 안정화: 피드백 선형화 접근법 (Stabilization of Underwater Glider by Buoyancy and Moment Control: Feedback Linearization Approach)

  • 지성철;이호재;김문환;문지현
    • 한국해양공학회지
    • /
    • 제28권6호
    • /
    • pp.546-551
    • /
    • 2014
  • This paper addresses a feedback linearization control problem for the nonlinear dynamics of an underwater glider system. We consider the buoyancy and moment as control inputs, which come from the mass variation and elevator control, respectively. Moment-to-force coupling increases the nonlinearities, which make the controller design difficult. By using a feedback linearization technique, we convert the nonlinear underwater glider to an equivalent linear model and design a linear controller. The controller for the equivalent converted linear system is designed using sufficient conditions in terms of linear matrix inequalities. Then, the control input of the nonlinear model of an underwater glider is formulated from the linear control input. An experimental examination is implemented to verify the effectiveness of the proposed technique.

소형 다관절로봇을 위한 운용 소프트웨어 구현 (Implementation of Operating Software for Small Multi-Jointed Robots)

  • 손현승;김우열;김영철
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.946-951
    • /
    • 2009
  • The small multi-jointed robots for most education are developed with the way of firmware. But the firmware may be very difficult to develop as gradually increasing throughputs and control routines. Due to limit of firmware we try to use on RTOS, but hard to adapt on the small multi-jointed robots. It would be hard to install RTOS into the small multi-jointed robots because of the size capacity of RTOS, and lack of libraries for control of the particular hardware. Moreover, even its RTOS with many functions causes its to make overheads scheduling, TCB (Task Control Block), and task states. Also to keep maintenance of RTOS, it is composed of components for the whole structure of my proposed RTOS. Additionally, We provided with libraries of servo motor and sensor control and developed RMS (Rate Montonic scheduler) to handle tasks on real time and reduce overheads. Therefore, It is possible to work the fixed priority and task preemptive way. We show one example of the multi-jointed robot installed with my proposed RTOS, which shows to obstacle avoidance and climbing up the slope.

욕창 예방 및 치유를 위한 의료용 로봇 침대 제어 시스템 (The Control System of a Medical Robot Bed for Prevention and Healing of Pressure Ulcer)

  • 이영대;김창영;장창준;김정애;임재영
    • 문화기술의 융합
    • /
    • 제6권3호
    • /
    • pp.353-359
    • /
    • 2020
  • 본 연구에서는 욕창 예방과 치유를 위해 개발된 의료용 로봇 침대의 제어기 구조와 제어 알고리즘에 대해 기술한다. 상용의 기존 욕창 예방 매트리스는 수동으로 동작하고 잔존 최대 체압이 욕창 발생 임계 체압을 넘어서기 때문에 이론적으로는 항상 욕창이 발생할 여지가 있지만, 본 연구에 개발된 시스템은 능동형 전기구동 건반을 사용하여 침대의 건반이 하강하면 체압이 0으로 떨어져서 욕창이 발생하지 않는다. 또한, 침대의 건반이 상승하여 욕창 임계 체압 이상이더라도 지속시간을 욕창 발생 임계시간 이내로 하도록 기구와 제어 알고리즘이 설계되어 있어서 욕창 발생 자체가 일어나지 않으며, 이는 바로 상용화가 가능한 욕창 예방 로봇 침대임을 뜻한다. 침대 건반의 모터는 의료용으로 적합한 BLDC 서보 드라이버를 설계한 모터로 되어있고 전장이 단순하여 쉽게 사용할 수 있도록 설계되었으며, CAN(Car Area Network)방식으로 서로 통신한다. 제작된 시스템은 욕창 예방에 효과적인 새로운 의료용 로봇 침대로 욕창으로 고통받는 많은 환자들에게 제공될 수 있도록 보급할 예정이다.

Design and Experimental Evaluation of a Robust Force Controller for a 6-Link Electro-Hydraulic Manipulator via H$_{\infty}$ Control Theory

  • Ahn, Kyoung-Kwan;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.999-1010
    • /
    • 2003
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. This maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulators because hydraulic manipulators have the advantage of electric insulation and power/mass density. Meanwhile an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this paper, the robust force control of a 6-link electro-hydraulic manipulator system used in the real maintenance task of active electric lines is examined in detail. A nominal model for the system is obtained from experimental frequency responses of the system, and the deviation of the manipulator system from the nominal model is derived by a multiplicative uncertainty. Robust disturbance observers for force control are designed using this information in an H$\_$$\infty$/ framework, and implemented on the two different setups. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved even if the stiffness of environment and the shape of wall change.

The Design and Implementation of a Network-based Stand-alone Motion System

  • Cho, Myoung-Chol;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.865-870
    • /
    • 2003
  • A motion controller has been used variously in industry such as semiconductor manufacture equipment, industrial robot, assembly/conveyor line applications and CNC equipment. There are several types of controller in motion control. One of these is a PC-based motion controller such as PCI or ISA, and another is stand-alone motion controller. The PC bus-based motion controller is popular because of improving bus architectures and GUI (Graphic User Interface) that offer convenience of use to user. There are some problems in this. The PC bus-based solution allows for only one of the form factors, so it has a poor flexibility. The overall system package size is bigger than other motion control system. And also, additional axes of control require additional slot, however the number of slots is limited. Furthermore, unwieldy and many wirings come to connect plants or I/O. The stand-alone motion controller has also this limit of axes of control and wiring problems. To resolve these problems, controller must have capability of operating as stand-alone devices that resides outside the computer and it needs network capability to communicate to each motion device. In this paper, a network-based stand-alone motion system is proposed. This system integrates PC and motion controller into one stand-alone motion system, and uses CAN (Controller Area Network) as network protocol. Single board computer that is type of 3.5" FDD form factor is used to reduce the system size and cost. It works with Windows XP Embedded as operating system. This motion system operates by itself or serves as master motion controller that communicates to slave motion controller. The Slave motion controllers can easily connect to master motion system through CAN-network.

  • PDF