• Title/Summary/Keyword: Robot Control System

Search Result 2,876, Processing Time 0.034 seconds

An Implementation of the path-finding algorithm for TurtleBot 2 based on low-cost embedded hardware

  • Ingabire, Onesphore;Kim, Minyoung;Lee, Jaeung;Jang, Jong-wook
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Nowadays, as the availability of tiny, low-cost microcomputer increases at a high level, mobile robots are experiencing remarkable enhancements in hardware design, software performance, and connectivity advancements. In order to control Turtlebot 2, several algorithms have been developed using the Robot Operating System(ROS). However, ROS requires to be run on a high-cost computer which increases the hardware cost and the power consumption to the robot. Therefore, design an algorithm based on low-cost hardware is the most innovative way to reduce the unnecessary costs of the hardware, to increase the performance, and to decrease the power consumed by the computer on the robot. In this paper, we present a path-finding algorithm for TurtleBot 2 based on low-cost hardware. We implemented the algorithm using Raspberry pi, Windows 10 IoT core, and RPLIDAR A2. Firstly, we used Raspberry pi as the alternative to the computer employed to handle ROS and to control the robot. Raspberry pi has the advantages of reducing the hardware cost and the energy consumed by the computer on the robot. Secondly, using RPLIDAR A2 and Windows 10 IoT core which is running on Raspberry pi, we implemented the path-finding algorithm which allows TurtleBot 2 to navigate from the starting point to the destination using the map of the area. In addition, we used C# and Universal Windows Platform to implement the proposed algorithm.

Analysis and Design of Jumping Robot System Using the Model Transformation Method

  • Suh Jin-Ho;Yamakita Masaki
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.200-210
    • /
    • 2006
  • This paper proposes the motion generation method in which the movement of the 3-links leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is the realization of jumping control moving in a vertical direction, which mimics a cat's behavior. To consider the movement from the point of the constraint mechanical system, a robotics system for realizing the motion will change its configuration according to the position. The effectiveness of the proposed scheme is illustrated by simulation and experimental results.

Adaptive Tracking Control of Two-Wheeled Welding Mobile Robot - Dynamic Model Approach -

  • Bui, Trong Hieu;Nguyen, Tan Tien;Suh, Jin-Ho;Kim, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2424-2426
    • /
    • 2002
  • This paper proposes an adaptive control method of partially known system and shows its application result to control for two-wheeled WMR. The controlled system is stable in the sense of Lyapunov stability. To design a tracking controller for welding path reference, an error configuration is defined and the controller is designed to drive the error to zero as fast as desired. Moments of inertia of system are considered to be unknown system parameters. Their values are estimated using update laws in adaptive control scheme. The effectiveness of the proposed controller is shown through simulation results.

  • PDF

Indirect Adaptive Self-Regulating Fuzzy Control of Robot Manipulators Using Sliding Mode (슬라이딩 모드를 이용한 로봇 매니풀레이터의 간접적응 자기조정 퍼지제어)

  • Park, Won-Sung;Yang, Hai-Won;Chung, Ki-Chull;Kim, Do-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1718-1719
    • /
    • 2007
  • In this paper, a fuzzy sliding mode control that combines with a adaptive self-regulating technique is proposed for manipulators with uncertainties. Especially the system uncertainties is approximated using fuzzy rule adaptation technique. The proposed controller is composed of the equivalent control that includes the approximation of the system uncertainties and the hitting control that is used to constrain the states of the system to maintain on the sliding surfaces and used to guarantee the system robustness. Simulation results are presented to show the effectiveness of the proposed controller

  • PDF

Walking Algorithm of Biped Robots using Hybrid System Approach (하이브리드 시스템 방법을 이용한 이족보행 로봇의 보행 알고리즘)

  • Chu, Jung-Hyun;Lim, Mee-Seub;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.249-251
    • /
    • 2005
  • For walking patterns of biped robots, knee-bent patterns are used in most cases. However, humans are mostly walking with their knees nearly stretched. In this paper, a human-like walking algorithm using hybrid system is proposed for biped robots, The hybrid system consists of the logically constituted discrete system, in which the discrete states are defined by considering the walking characteristics, and the continuous state system used for motor control. It is shown that the proposed algorithm is effective by experimental studies.

  • PDF

Development of landmark tracking system (표식 인식 시스템의 개발)

  • 권승만;이상룡
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.642-645
    • /
    • 1991
  • This paper presents the results of research on hardware and software of the landmark tracking system to the positions of moving robot in real time. The landmark tracking system is composed of CCD camera, landmark, strobo system and image processing board. The algorithm calculates the position and direction by using the coordinate transformation fomula after calculating the centroid and rotation angle of landmark at fixed position using the image data. The experiment is performed with landmark tracking system is loaded on xyz-table. XYZ-table is used for identifying the true position in our experiment. The results shows that this system has high performance with maxima error of .+-.1 pixels.

  • PDF

Computer-Assisted System for Accident Analysis and Mul-function Protection in Industrial Robot (산업용 로보트의 사고분석과 오동작 방지를 위한 Computer-Assisted System)

  • 김병석
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.61-64
    • /
    • 1993
  • Until now, Industrial robotic sa(ety problems are not considered as a indust rial safety problems. In order to reduce industrial robotic safety problem, analyzing problem, risk control, and developing industrial robotic standard s are necessary. In this study, SAFEMIR(Safety Management for Industrial Robotic) is developed for preventing mul-function in industrial robotics. This system is consisted of Da ta Base Management System Module and Expert System Module which Is a part of Articial In telligence. Borland C++ and Foxpro 2.0 are used for implementing this system.

  • PDF

Development of a Robot for Automation of a Callus Inoculation (식물조직배양 자동화를 위한 로봇개발 - 엔드이펙터 및 시스템의 성능시험 -)

  • Chung, Suk-Hyun;No, Dae-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.87-94
    • /
    • 2009
  • This study was conducted to develop an automation system of inoculation processing of a lily callus. The results are summarized as followings: The end-effector was manufactured as suction and machine type. And these end-effectors can separate the callus from the mediums and divide the separated callus and then inoculate the divided callus to new mediums. Using the machine type end-effect0r, the results of the experiment showed the success rate in the division process was 100% while the separation and inoculation process was 92%. To develop the automation controller of inoculation process, the system was developed to control an external device and the manipulator. The data communication program between a robot and a personal computer was also developed using CAsyncsocket and Ethernet Interface.

Realtime e-Actuator Fault Detection using Online Parameter Identification Method (온라인 식별 및 매개변수 추정을 이용한 실시간 e-Actuator 오류 검출)

  • Park, Jun-Gi;Kim, Tae-Ho;Lee, Heung-Sik;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.376-382
    • /
    • 2014
  • E-Actuator is an essential part of an eVGT, it receives the command from the main ECU and controls the vane. An e-Actuator failure can cause an abrupt change in engine output and it may induce an accident. Therefore, it is required to detect anomalies in the e-Actuator in real time to prevent accidents. In this paper, an e-Actuator fault detection method using on-line parameter identification is proposed. To implement on-line fault detection algorithm, many constraints are considered. The test input and sampling rate are selected considering the constraints. And new recursive system identification algorithm is proposed which reduces the memory and MCU power dramatically. The relationship between the identified parameters and real elements such as gears, spring and motor are derived. The fault detection method using the relationship is proposed. The experiments with the real broken gears show the effectiveness of the proposed algorithm. It is expected that the real time fault detection is possible and it can improve the safety of eVGT system.

Development of a Vision-based Blank Alignment Unit for Press Automation Process (프레스 자동화 공정을 위한 비전 기반 블랭크 정렬 장치 개발)

  • Oh, Jong-Kyu;Kim, Daesik;Kim, Soo-Jong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.65-69
    • /
    • 2015
  • A vision-based blank alignment unit for a press automation line is introduced in this paper. A press is a machine tool that changes the shape of a blank by applying pressure and is widely used in industries requiring mass production. In traditional press automation lines, a mechanical centering unit, which consists of guides and ball bearings, is employed to align a blank before a robot inserts it into the press. However it can only align limited sized and shaped of blanks. Moreover it cannot be applied to a process where more than two blanks are simultaneously inserted. To overcome these problems, we developed a press centering unit by means of vision sensors for press automation lines. The specification of the vision system is determined by considering information of the blank and the required accuracy. A vision application S/W with pattern recognition, camera calibration and monitoring functions is designed to successfully detect multiple blanks. Through real experiments with an industrial robot, we validated that the proposed system was able to align various sizes and shapes of blanks, and successfully detect more than two blanks which were simultaneously inserted.