• Title/Summary/Keyword: Robot Control Scheme

Search Result 576, Processing Time 0.03 seconds

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

A Study on the Practicality of Vision Control Scheme used for Robot's Point Placement task in Discontinuous Trajectory (불연속적인 궤적에서 로봇 점 배치작업에 사용된 비젼 제어기법의 실용성에 대한 연구)

  • Son, Jae-Kyeong;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.386-394
    • /
    • 2011
  • This paper is concerned with the application of the vision control scheme for robot's point placement task in discontinuous trajectory caused by obstacle. The proposed vision control scheme consists of four models, which are the robot's kinematic model, vision system model, 6-parameters estimation model, and robot's joint angles estimation model. For this study, the discontinuous trajectory by obstacle is divided into two obstacle regions. Each obstacle region consists of 3 cases, according to the variation of number of cameras that can not acquire the vision data. Then, the effects of number of cameras on the proposed robot's vision control scheme are investigated in each obstacle region. Finally, the practicality of the proposed robot's vision control scheme is demonstrated experimentally by performing the robot's point placement task in discontinuous trajectory by obstacle.

An Experimental Study on the Optimal Arrangement of Cameras Used for the Robot's Vision Control Scheme (로봇 비젼 제어기법에 사용된 카메라의 최적 배치에 대한 실험적 연구)

  • Min, Kwan-Ung;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.15-25
    • /
    • 2010
  • The objective of this study is to investigate the optimal arrangement of cameras used for the robot's vision control scheme. The used robot's vision control scheme involves two estimation models, which are the parameter estimation and robot's joint angle estimation models. In order to perform this study, robot's working region is divided into three work spaces such as left, central and right spaces. Also, cameras are positioned on circular arcs with radius of 1.5m, 2.0m and 2.5m. Seven cameras are placed on each circular arc. For the experiment, nine cases of camera arrangement are selected in each robot's work space, and each case uses three cameras. Six parameters are estimated for each camera using the developed parameter estimation model in order to show the suitability of the vision system model in nine cases of each robot's work space. Finally, the robot's joint angles are estimated using the joint angle estimation model according to the arrangement of cameras for robot's point-position control. Thus, the effect of camera arrangement used for the robot's vision control scheme is shown for robot's point-position control experimentally.

Robust control of robot manipulators using a decentralized control sheme (분산화 제어 기법을 이용한 로봇 매니퓰레이터의 강인 제어)

  • 최현철;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.581-584
    • /
    • 1996
  • This paper presents the robust control of robot manipulators using a decentralized control scheme. The control scheme decouples the coupling dynamics between the joints and compensates the joint variable errors without any computation of the dynamics. The performance of the control scheme is compared with that of other control schemes such as the computed torque scheme and the adaptive control scheme by simulation.

  • PDF

A Study on the Effect of Weighting Matrix of Robot Vision Control Algorithm in Robot Point Placement Task (점 배치 작업 시 제시된 로봇 비젼 제어알고리즘의 가중행렬의 영향에 관한 연구)

  • Son, Jae-Kyung;Jang, Wan-Shik;Sung, Yoon-Gyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.986-994
    • /
    • 2012
  • This paper is concerned with the application of the vision control algorithm with weighting matrix in robot point placement task. The proposed vision control algorithm involves four models, which are the robot kinematic model, vision system model, the parameter estimation scheme and robot joint angle estimation scheme. This proposed algorithm is to make the robot move actively, even if relative position between camera and robot, and camera's focal length are unknown. The parameter estimation scheme and joint angle estimation scheme in this proposed algorithm have form of nonlinear equation. In particular, the joint angle estimation model includes several restrictive conditions. For this study, the weighting matrix which gave various weighting near the target was applied to the parameter estimation scheme. Then, this study is to investigate how this change of the weighting matrix will affect the presented vision control algorithm. Finally, the effect of the weighting matrix of robot vision control algorithm is demonstrated experimentally by performing the robot point placement.

Aperiodic Gait Control based on Periodic Gait fo Teleoperation of a Quadruped Walking Robot (4족 보행로봇의 원격조종을 위한 주기 걸음새 기반의 비주기적 걸음새 제어)

  • 최명호;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.397-397
    • /
    • 2000
  • This paper presents a gait control scheme for teleoperation of a quadruped-walking robot. In teleoperation of a walking robot, an operator gives a real-time generated velocity command to a walking robot instead of a moving trajectory. When the direction of the velocity command is changed, the periodic gait is not available because this requires an initial foot position . This paper proposes the aperiodic gait control scheme that can converge to a periodic gait Simulation results are given to demonstrate the efficiency of the proposed control scheme.

  • PDF

Pole placement self-tuning control of robot manipulators (극점 배치 자기 동조에 의한 로보트 매니퓰레이터 제어)

  • 이종용;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.32-35
    • /
    • 1987
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a desired trajectory in spite of the presence of nonlinearties and parameter uncertainties in robot dynamic models. In this paper, an adaptive control scheme for a robot manipulator is proposed to design the self-tuning controller which combines the pole placement with the extended linearized perturbation model. And this control scheme has two components: a feadforward control and a feedback compensation control. Based on this, the controller is demonstrated by the simulation about position control of a three-link manipulator with payload and parameter uncertainty.

  • PDF

Decentralized Adaptive fuzzy sliding mode control of Robot Manipulator

  • Kim, Young-Tae;Lee, Dong-Wook
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.34-40
    • /
    • 2001
  • Robot manipulator has highly nonlinear dynamics. Therefore the control of multi-link robot arms is a challenging and difficult problem. In this paper a decentralized adaptive fuzzy sliding mode scheme is developed for control of robot manipulators. The proposed scheme does not require an accurate manipulator dynamic model, yet it guarantees asymptotic trajectory tracking despite gross robot parameter variations. Numerical simulation for decentralized control of a 3-axis PUMA arm will also be included.

  • PDF

Precise position control of hydraulic driven stenciling robot using neural network (신경회로망을 이용한 유압 스텐슬링 로봇의 정확한 위치 제어)

  • Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.779-782
    • /
    • 1997
  • In this paper, accurate position control of a stenciling robot manipulator is designed. The stenciling robot is requried to draw lines and characters on the pavement. Since the robot is huge and heavy, the inertia is expected to play a major role in the tracking performance as desired. Here we are proposing neural network control scheme for a computed-torque like controller for the stenciling robot. On-line compensation is achieved by neural network. Simulation studies with stenciling robot are carried out to test the performance of the proposed control scheme.

  • PDF

Development of Robot Vision Control Schemes based on Batch Method for Tracking of Moving Rigid Body Target (강체 이동타겟 추적을 위한 일괄처리방법을 이용한 로봇비젼 제어기법 개발)

  • Kim, Jae-Myung;Choi, Cheol-Woong;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.161-172
    • /
    • 2018
  • This paper proposed the robot vision control method to track a moving rigid body target using the vision system model that can actively control camera parameters even if the relative position between the camera and the robot and the focal length and posture of the camera change. The proposed robotic vision control scheme uses a batch method that uses all the vision data acquired from each moving point of the robot. To process all acquired data, this robot vision control scheme is divided into two cases. One is to give an equal weight for all acquired data, the other is to give weighting for the recent data acquired near the target. Finally, using the two proposed robot vision control schemes, experiments were performed to estimate the positions of a moving rigid body target whose spatial positions are unknown but only the vision data values are known. The efficiency of each control scheme is evaluated by comparing the accuracy through the experimental results of each control scheme.