• 제목/요약/키워드: Robot Control

검색결과 5,336건 처리시간 0.044초

이족 보행 로봇의 반복 걸음새 제어를 위한 학습 제어기 (A Learning Controller for Repetitive Gate Control of Biped Walking Robot)

  • 임동철;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.538-538
    • /
    • 2000
  • This paper presents a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of teaming control to biped robotic motion is shown via dynamic simulation with 12 dof biped robot.

  • PDF

인터넷을 통한 로봇의 원격 제어 (Remote Control of a Robot Through the Internet)

  • 이동주;양태규
    • 정보학연구
    • /
    • 제4권1호
    • /
    • pp.9-22
    • /
    • 2001
  • 본 논문에서는 웹브라우저를 이용하여 로봇을 원격 제어한다. 4대의 독립된 PC를 사용하여 자각의 기능을 분리하고 상호 연동하는 구조로 PC를 연결하였다. 조작자가 시간과 장소에 제약받지 않고 웹브라우저를 이용하여 제어값을 입력하면 제어값은 웹 서버를 거쳐 데이터베이스에 저장된다. 로봇과 연결된 PC는 데이터베이스에서 1ms 간격으로 제어값을 입력받아 제어값의 변화가 있을 경우만 제어값의 변화량으로 로봇이 동작한다. 스텝모터를 이용하여 간단한 로봇을 제작하고 이를 웹 브라우저를 이용하여 실제 동작시킨다. 조작자가 원하는 제어값이 최종 수신단의 로봇에 제대로 전달되어 동작하는지 확인하고 웹브라우저를 이용한 로봇제어의 가능성을 확인하였다

  • PDF

공정 자동화를 위한 싱글 휠 드라이빙 모바일 로봇의 견실제어에 관한 연구 (A Study on Robust Control of Mobile Robot with Single wheel Driving Robot for Process Automation)

  • 신행봉;차보남
    • 한국산업융합학회 논문집
    • /
    • 제19권2호
    • /
    • pp.81-87
    • /
    • 2016
  • This paper presents a new approach to control of stable motion of single wheel driving robot system of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel. This robot doesn'thave any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Lagrange equations was applied to derive the dynamic equations of the one wheel driving robot to implement the dynamic speed control of the mobile robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and optical regulator are utilized to prove the reliability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based robust controller has been adopted to reduce the vibration by the situation function. The optimal controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the driving wheel. The control performance of the control systems from a single dynamic model has been illustrated by the real experiments.

힘측정기반 팔꿈치 재활로봇 설계 및 힘제어 (Design of an Elbow Rehabilitation Robot based on Force Measurement and its Force Control)

  • 김한솔;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.413-420
    • /
    • 2015
  • This paper describes the design of an elbow rehabilitation robot based on force measurement that enables a severe stroke patient confined to their bed to receive elbow rehabilitation exercises. The developed elbow rehabilitation robot was providewitha two-axis force/torque sensor which can detect force Fz and torque Tz, thereby allowing it to measure therotational force (Tz) exerted on the elbow and the signal force Fz which can be used as a safety device. The robot was designed and manufactured for severe stroke patients confined to bed, and the robot program was manufactured to perform flexibility elbow rehabilitation exercises. Asa result of the characteristics test of the developed rehabilitation robot, the device was safely operated while the elbow rehabilitation exercises were performed. Therefore, it is thought that the developed rehabilitation robot can be used for severe stroke patients.

미장로봇의 운동제어 (The Motion Control of Concrete Floor Finishing Robot)

  • 신동헌;한두호
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.38-45
    • /
    • 1999
  • The 2-trowel type concrete floor finishing robot can move in any direction by adjusting the posture or trowels without any wheels. Since the quality of the smoothed and polished concrete floor is determined by plastering speed, we need to control the velocity of the robot. However, we cannot use the typical motion control method because it is very difficult to measure the velocity of the robot, in contrast to the mobile robots with wheels. To overcome this difficulty, the following are studied in this paper: we found that the robot dynamics has the disturbance depending on its translational speed, and showed that there exists the saturated velocity of the robot which is set by the posture of the trowels, and obtained the relationship between the saturated velocity and the posture in the translation. The result enables us to control the motion of the robot only by adjusting the posture of trowels without measuring the velocity of the robot. Currently, we built the troweling robot and are experimenting its performance with the proposed motion control method.

  • PDF

로봇-작업환경 동역학의 학습에 의한 로봇의 힘 추종 임피이던스 제어 (Force tracking impedance control of robot by learning of robot-environment dynamics)

  • 신상운;최규종;김영원;안두성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.548-551
    • /
    • 1997
  • Performance of force tracking impedance control of robot manipulators is degraded by the uncertainties in the robot and environment dynamic model. The purpose of this paper is to improve the controller robustness by applying neural network. Neural networks are designed to learn the uncertainties in robot and environment model for compensating the uncertainties. The proposed scheme is verified through the simulation of 20DOF robot manipulator.

  • PDF

Petri-Net을 이용한 효과적인 다중로봇 제어알고리즘의 구현 (Embodiment of Effective Multi-Robot Control Algorithm Using Petri-Net)

  • 선승원;국태용
    • 제어로봇시스템학회논문지
    • /
    • 제9권11호
    • /
    • pp.906-916
    • /
    • 2003
  • A multi-robot control algorithm using Petri-Net is proposed for 5vs5 robot soccer. The dynamic environment of robot soccer is modeled by defining the place and transition of each robot and converting it into Petri-Net diagram. Once all the places and transitions of robots are represented by the Petri-Net model, their actions can be chosen according to the roles of robots and position of the ball in soccer game, e.g., offensive, defensive and goalie robot. The proposed modeling method is implemented for soccer robot system. The efficiency and applicability of the proposed multiple-robot control algorithm using Petri-Net are demonstrated through 5vs5 Middle League SimuroSot soccer game.

Robot software component interface abstractions for distributed sensor and actuator

  • Yang, Kwang-Woong;Won, Dae-Heui;Choi, Moo-Sung;Kim, Hong-Seok;Lee, Tae-Geun;Kwon, Sang-Joo;Park, Joon-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2285-2289
    • /
    • 2005
  • Robot is composed of various devices but, those are incompatible with each other and hardly developing reusable control software. This study suggests standard abstract interface for robot software component to make portable device and reusable control software of robot, based on familiar techniques to abstract device in operating systems. This assures uniform abstracted interface to the device driver software like sensor and actuator and, control program can be transparent operation over device. This study can separately and independently develop devices and control software with this idea. This makes it possible to replace existing devices with new devices which have an improved performance.

  • PDF

경사로에서 세그웨이 로봇의 주행 속도를 통한 경사각 추정 (Estimate the Inclination Angle using Traveling Speed of Segway Robot on the Slope)

  • 정희인;이상용;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1164-1169
    • /
    • 2014
  • This paper proposes an angle estimation of Segway robot for the slop driving. Most of Segway robot was controlled by pose control of keeping robot's balance and motor control of driving. In motor control, we analyzed Segway robot kinetically and estimated an angle of inclination using the velocity that depends on input force. In pose control, also, we used PD controller and evaluated a stability of controller through MATLAB simulation. Assuming the robot keeps its balance stably using controller, we could linearize dynamics. We could obtain the result through the experiment which estimates an angle using the velocity of Segway robot that is derived from linearized dynamics.

지능형 제어기법 및 센서 인터페이스를 이용한 이족 보행 로봇의 동적보행 제어 (Dynamic Walking Control of Biped Walking Robot using Intelligent Control Method and Sensor Interface)

  • 고재원;임동철
    • 전기학회논문지P
    • /
    • 제56권4호
    • /
    • pp.161-167
    • /
    • 2007
  • This paper introduces a dynamic walking control of biped walking robot using intelligent sensor interface and shows an intelligent control method for biped walking robot. For the dynamic walking control of biped walking robot, serious motion controllers are used. They are main controller(using INTEL80C296SA MPU), sub controller(using TMS320LF2406 DSP), sensor controller(using Atmega128 MPU) etc. The used sensors are gyro sensor, tilt sensor, infrared sensor, FSR sensor etc. For the feasibility of a dynamic walking control of biped walking robot, we use the biped walking robot which has twenty-five degrees of freedom(D.O.F.) in total. Our biped robot is composed of two legs of six D.O.F. each, two arms of five D.O.F. each, a waist of two D.O.F., a head of one D.O.F.