
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

1. INTRODUCTION

Robot can be used in industry, extremely dangerous

environment, medicine, entertainment and humanoid close to
human. In addition, robot can be adjusted with several forms
in various fields. Hardware and control software of robot tend
to be more complicated and used with diverse sensors and
actuators. For that reason, many developers participate in
robot development, and multifarious programs are used in
various platforms. As middleware is needed in distributed
environment including these multiplications, this study
explains the robot software component interface abstraction to
add transparency and flexibility of robot software.

Before this study, CMR (Component based Modularized
Robot) and FMR (Function based Modularized Robot) were
developed [1-4]. The purpose of this study is researching
architecture of hardware and software platform with
modularized and standardized methods based on robot that can
be applicable in various fields. This study proposes the
middleware that is used in distributed environment and diverse
components such as Vision, Navigation, Localization, Motor
Driver and Motion Driver, which consist of robot software.
Disadvantage of established robot is a lack of transparency
and flexibility of control software. For instance, it is difficult
to change existing sensor or add new sensor for progressing
function of robot. And software which was developed in
existing robot has a trouble in porting to new robot. This
structure of robot software needs much time to porting, and it
is ineffective to develop hardware and software on both sides.

This study tries to solve the problem that was said above by
separating software from robot hardware and using
hierarchical structure of software [5,6]. This study suggests a
scheme, which makes standard abstract interface of robot
software component to be composed hierarchically, for
compatibility of robot and reuse of control software. This
method is similar with abstraction of device in operation
system.

There are several advantages when software component is
distributed in various platforms connected to distributed
network more than in a single platform. For example, a robot
has to attaches all requested sensors and actuators, but the

voluminous and heavy sensor can be separately installed from
the robot. In another example, if expensive sensors have to be
installed in several robots, it can design that several robots can
use one sensor. A desktop in which control software is
installed can control several robots that have just an actuator.
At this time, one localization sensor attached on the ceiling
can trace the position of several robots [7].

There are CORBA and DCOM used in distributed
environment [8,9]. However, because CORBA and DCOM are
developed for general purpose, these need excessive resource
for using robot and have no guarantee to ensure predictive
operation, which should need real time. Moreover,
communication media like CAN or RS-232 can not be used,
and it is hard to develop subordinate protocol about the new
communication media. For this study, we use
MRSF(Modularized Robot Software Framework) architecture
that was developed in System engineering project for personal
robot. The MRSF architecture running on distributed
environment allows robot control programs to be written in
any programming language and to run on any computer with a
network connection to a robot [10,11].

2. HAL

Hardware Abstraction Layer(HAL) is a general concept

used in software like operating system and virtual machine.
HAL allows operating system to have compatibility with
many processors by separating operating system from
platform dependent part and processor. In Linux, there are
already lots of useful devices and developed applications.
Application developers can exploit irrelevantly application
programs in subordinate platforms.

Diverse constructed robots have practical differences in
hardware. For example, there is a robot that uses a vision or
tactual sense to recognize environments, and a robot that uses
wheels or legs to move. This study offers HAL between
control-monitoring software and hardware, and standardizes
the interface. HAL provides equal abstractions to subordinate
sensor and actuator components, and the control-monitoring
software operates transparently about the subordinate robot
hardware. It gives the robot control software to be

Robot software component interface abstractions for distributed

sensor and actuator

KwangWoong Yang*, DaeHeui Won*, Moosung Choi*, Hongseok Kim*
Taegeun Lee*, SangJoo Kwon**, and Joon Woo Park***

* Division of Applied Robot Technology , KITECH, Ansan, Korea
(Tel : +82-31-400-3989; E-mail: {ygkgwg, daehee, moosung, hskim}@kitech.re.kr, elecmain@dankook.ac.kr)

** School of Aerospace & Mechanical Engineering, HAU, Seoul, Korea
(Tel : +82-2-300-0178; E-mail: sjkwon@hau.ac.kr)**

*** Fine Digital Inc., Korea
(Tel : +82-31-788-8852; E-mail: jwpark@finedigital.com)

Abstract: Robot is composed of various devices but, those are incompatible with each other and hardly developing reusable
control software. This study suggests standard abstract interface for robot software component to make portable device and
reusable control software of robot, based on familiar techniques to abstract device in operating systems. This assures uniform
abstracted interface to the device driver software like sensor and actuator and, control program can be transparent operation over
device. This study can separately and independently develop devices and control software with this idea. This makes it possible to
replace existing devices with new devices which have an improved performance.

Keywords: Robot, component, abstraction, HAL, interface, architecture

2285

mailto:@kitech.re.kr
mailto:elecmain@dankook.ac.kr
mailto:sjkwon@hau.ac.kr
mailto:jwpark@finedigital.com

independently made. Hence, the control software developed
for one robot can be ported into other robots.

The MRSF has to have transparent and portable structures,
although the particular way in which MRSF is implemented is
not fitting for all robotic application domains. This study adds
HAL specification to the MRSF architecture for separating the
robot software from the robot hardware and using hierarchical
structures of software. HAL specification defines interfaces of
the software component for connection between software and
hardware, and defines a profile to describe characteristics of
hardware.

Interface is the specification expressed for abstracted
functions of a device. Property and method are used to
describe the interface specification. For instance, a number of
sensors in sensor array can be described in the property, and a
command reading a sensor can be described in the method.
And the interface is a agreement to provide transparent access
between software components in distributed network. As this
agreement defines, interface definition language is need
independency on particular languages like C, C++ and Java.
MRSF architecture use MIDL (Module Interface Definition
Language) that is similar with IDL of CORBA and DCOM
and suitable to robot modules. The interface described with
MIDL composes of attributes and methods, and can use
inheritance. The interface described with MIDL is translated
into stub and skeleton code proper to programming languages
through MIDL compiler. MIDL is not a programming
language but an interface definition language, which embodies
the software component programmed through C or C++.
MIDL supports a mapping of C, C++, RPL (Robot
Programming Language), Java, Python and Visual Basic.

Sensor and actuator devices are grouped together by its
functions. Therefore, the device which performs similar
functions deals in the same device in point of a user and sorts
out the same class. Although device drivers and the software
component in the same class have the same interface, they can
have different internal structures. The driver, as a software
code for the interface, adequately controls the device for
carrying out requested functions. In general, the device driver
is made subordinate to the specific hardware. Though the
software, which directly controls and monitors hardware, is
classified into the device driver, it belongs to the software
component.

Although the device driver is belonged in the same class,
there are different characteristics. They are described in a
profile of a device. Various features of the device are written
in the profile. For example, a diameter of a wheel, length of an
axle, size and weight of a robot make a description of the
profile.

3. ABSTRACT TO A STANDARD INTERFACE

Function of a robot is classified into working, moving,

sensing, and processing. For moving, the robot has to
recognize environment, avoid an obstacle, and localize a
position. And a manipulator needs for working. Wheels need
or more than two legs like an animal need for moving. There
are four types of sensors recognizing environments. One is the
sensor that perceives absolute position, relative distance
between objects, and movable quantity. The other is the
camera that perceives an object, color, and motion as an
animal sight. This study sorts multifarious devices in a
complex robot system and extract appropriate interfaces.

There is an ambiguous case to separate a boundary of the
abstracted device. For instance, there is a sonar satellite
receiver that can directly read a position of a robot and a laser
finder using distance measurement that can use position

measurement with Markov localization. Though it is important
to know the position of the robot, it can also know the distance
from obstacles to avoid. Therefore, the abstract layer about
sensor devices is consisted of multiple layers for the position
and distance measurements.

Even though it is easy to design an interface in one kind of
a device, it is not simple to generalize an interface including
various kinds of devices. The interface provided in this study
cannot ensure that support all devices. To extract interface, at
first, all devices and robot software components that used in
CMR and FMR display in block diagram. The device driver or
the software component performs functions displays in
rectangle, and the data flow between them displays in arrow.
The figure 1 indicates the SLAM software structure using to a
robot. The figure 2 indicates the detailed structure of
localization component inside SLAM software. The figure 3
displays the detailed structure of obstacle avoidance
component inside SLAM software. There is no the detailed
structure of path planning and map building software.

Map Building Navigation

Maintenance

Map

Map matching

Localization

Obstacle Avoidance

Path Planning

ActuatorSensor

Fig. 1 SLAM software structure.

Kalman filter

Map matching
(Markov localization)

Feature extraction

VisionUltra-sonic

Infra-red

Laser Finder

EncoderAccelerometer

Odometry

GPS U-SAT

Map

displacement distance position

Feature

Position

Estimated Position

(x, y , θ)

Fig. 2 Localization software structure.

VFH (Vector Field Histogram),
Wall following

Obstacle
Map

Ultra-sonic

Infra-red

Laser Finder

Distance

(driving velocity,
angular velocity)

Encoder

PID, DOB,
Optimal control

Target (x, y , θ)

Motor

Current (x, y , θ)

Forward
Kinematics

Left/Right wheel
velocity

Fig. 3 Obstacle avoidance software structure.

2286

Sensors and actuators using in a robot are classified into

device classes by its measurement data type, and the block
inputted similar data and commands in the data flow between
robot software blocks is classified into the component
belonged the same class.

Standard abstract interface is defined in generalized
functions of similar devices in same class. A profile obtains
each different characteristic of the similar devices. The
software component of two layered structures about sensors
and actuators is displayed in figure 4.

Displacement
Sensor Driver

Distance
Sensor Driver

Position
Sensor Driver

Dead
reckoningLocalization

Camera
Driver

Motor
Driver

Vision based
LocalizationVehicle Driver

HAL 0

HAL 1

HAL 0

HAL 1

Fig. 4 Layered software component structure.

Because commercial devices are made for using general

purposes, they contain most functions. However, wrapping
code has to be made for converting into standard interface,
because it is not corresponding with the structure proposed in
this study.

3.1 Vehicle

The mobile module of synchronized method in
HANWOOL Inc. and own making mobile module of
differential method are used for interface abstractions of the
vehicle device. Because the differential module is simply
composed, it is usually made by oneself with a motor, reducer,
and encoder. Faulhaber MCDC2805, a motion controller, or
own making motion controller is used to control a motor. The
motion controller interface is abstracted to allow control
software of the mobile module to approach transparently to the
motion controller. The mobile makes up two layered
interfaces: Motor Device that directly controls and monitors
position and speed and Vehicle Device that controls position
and speed.

(1) Motor Driver
A motor and encoder can use closed loop controls such as

PID or Optimal control. Most commercial motor controllers
use position control and speed control, and an encoder value
and speed can be read.

Motor device interface has the Initiate(),
DefineHomePosition(), VelocityCtl(), RelativePositionCtl(),
and AbsolutePositionCtl() of the method and has the Position,
Velocity, and Acceleration of the property.

There are the Operation Mode, Encoder Resolution,
Position Limits, Minimum Velocity, Maximum Velocity, and
Acceleration in a profile of motor.

(2) Vehicle Driver
In the three-dimensional space, a position of a rigid body is

expressive into six values of latitude, longitude, altitude, roll,

pitch, and yaw. The position of a mobile robot indicates with
three degrees of freedom (x, y, θ) in a plane. The vehicle
with synchronized driver with turret and omni-directional
movement driver can indicate four degrees of freedom (x, y,
θ1, θ2) because of a difference of moving direction and
heading.

Most robot software use velocity control more than position
control for driving a vehicle. The vehicle driver is possible to
use relative position control, absolute position control, and the
velocity control. It can also estimate position with encoder
values. Vehicle device interface has the Initiate(),
GoForward(), GotoRelativeXY(), GotoAbsoluteXY(), Stop(),
TorqueFree(), Drive(), SetOdometry(), SetVelocity(), and
SetAcceleration() of the method and has the Running,
Odometry, Velocity, and Encoder of the property.

There are the Maximum Velocity, Acceleration,
StdDeviation, Offset, WheelDiameter, AxleLength,
Maneuverability, and DegreeOfFreedom in a profile.

3.2 Sensor

A sensor is classified into absolute position sensor, relative
distance senor, and displacement sensor. The relative distance
sensor measures the distance between a sensor and an object,
however the absolute position sensor measures a position of a
robot (x, y) or (x, y, θ) from a reference. Displacement
sensor perceives a displaceable quantity of position (Δx, Δy)
or a displaceable quantity of direction (Δθ) in a robot.

The interface of all sensor classes has the Initiate() and
ReadData() of the method and has the MeasurementCount,
MeasurementData of the property. There are the LimitsMin,
LimitsMax, Deviation, SpreadRadius, NumberOfMeasruement,
Offset, Adjustment Polynominal, MaximumVariance,
MaximumVarianceCount, and Averagingcount in a profile.

(1) Position Sensor Driver
GPS(Global Positioning System), PSD(Position Sensitive

Detector), RFID(Radio Frequency Identifier),
U-SAT(Ultra-sonar Satellite System), and Landmark based
Vision are used for recognizing position of a robot. GPS, PSD,
RFID, and U-SAT can recognize the position (x, y), but it
cannot recognize the direction. To predict the direction, the
robot has to move. The direction is estimated from
displaceable quantity of the odometry and displaceable
quantity of the position measured the sensor.

Using the PSD device can detect the position about several
robots. The PSD sensor on the ceiling detects an infrared light
radiated from the robot, and PSD device allows the robot to
know the position.

(2) Distance Sensor Driver
For measuring the relative distance between a robot and an

object, sonar sensor array, infrared sensor array, and laser
finder are used. The robot needs to know both of the relative
distance and the absolute position to move. The relative
distance sensor is utilized for avoiding obstacle, and the
absolute position sensor is utilized for seizing position.
However, the absolute position can be probabilistically
computed from the relative distance sensor by Markov
localization. Markov localization component belongs to the
same class with the position sensor driver.

(3) Displacement Sensor Driver
The sensor, which measures a movable quantity such as

acceleration sensor and encoder, integrates the movable
quantity to estimate a position of a robot. Therefore, an error is
continuously accumulated, if the moving distance increases.
The absolute position sensor is needed to compensate the error.
Kalman filter can compensate the movable quantity and the
absolute position.

2287

(4) Camera Driver
A camera can input enormous data at low cost. However, it

needs high efficiency processors to extract requested
information. Images inputted from the camera are used in
various fields such as localization, distance measurement,
object recognition, color recognition, and motion detection.
The 320x240-sized image and 640x480-sized image, which is
formatted in RGB24, can be inputted.

4. IMPLEMENTATION

This study made scenario to show how the interface

abstraction works efficiently in the robot software component
about distributed sensors and actuators. First, a control
software is developed on a remote PC by simulating sensors
and actuators of a robot on a local PC. A simulation can
develop the compatible software because it can test diverse
cases that cannot be tested in real hardware. Second, if the
control software development is somewhat completed, the
simulator is changed into the robot hardware device and
device drivers. It can be easily done by linked information is
modified. The control software connected to the robot
hardware has the problem that is not predicted in the simulator.
There are an advantage of the software development and
debugging by using a laptop or a desktop as a remote PC.
Third, if a hardware test is completed, a robot can
independently carry out functions by loading the control
software developed on a remote PC to a robot. The last, when
sensors and actuators in a robot are changed in different kind
of the same class, these are checked working correctly in
control software.

The simulator which is now using can simulate sensor
devices and vehicle devices except for RFID sensors and
camera devices. The simulator exists in each device class and
can make various sensors that have different features if it
changes a profile in the simulator.

The differential driver and the synchronized driver of
HANWOOL Inc. are used to check for interface abstractions
of the vehicle device driver. The synchronized driver has four
degrees of freedom (x, y, θ1, θ2) but control software does
not support four degrees of freedom, so the synchronized
driver is modified to corresponded robot heading and turret
direction.

The robot frame is designed for which it can be portable as
possible as many sensors. During the test, the sensor is tested
individually. The RFID sensor knows the position but not the
heading. Markov localization is used for accurately perceiving
the robot position, and the heading is predicted through
Kalman filter. U-SAT sensor uses four sonar satellites as a
position measurement system. If one of them is disappeared
by robot entering particular part, the wrong position is
outputted because of reflected waves. It has a trouble in
complex places with partitions and tables.

The skeleton code is made by MIDL compiler using the
interface of the device driver defines with the MIDL. C and
C++ are used to make the device driver.

The stub code which is used in robot software is made by
MIDL compiler using the interface of the device driver. The
robot software can be made with C, C++, Java, Python and
Visual Basic.

The figure 5 and 6 are tested results by interchanging a
laser finder and a sonar sensor array in the same Markov
Localization software. Green cross indicates the position of a
robot. The probability that the robot will be positioned is
higher in deep blue part. Though two sensors execute the
Localization by transferring the robot into the similar position,
each result of the sensor shows different outputs. An error

between the position of the robot and the highest point of
probability in figure 6 is that the laser finder has an offset
from a center of the robot.

Fig. 5 Markov localization results with laser finder

Fig. 6 Markov localization results with sonar sensor

5. CONCLUSION

The purpose of this study is the research of Hardware

Abstraction Layer (HAL) that makes the robot software
develop independent on hardware. For this study, HAL is
added in the MRSF architecture. HAL allows the robot
software developed for one robot to efficiently transplant into
other robots. Moreover, HAL can change existing sensors and
actuators of a robot without amending the robot software.

Although designed and embodied interfaces that can be
used in general purpose with various sensors and actuators on
a robot, it can not be adjusted in all robots. One interface
which is completed and standard will not be found. However,
there is a need to make the abstracted interface for general and
useful purposes. In the future, device drivers about more
sensors and actuators should be developed, and Abstract
Device Interface about a manipulator has to make a progress.

ACKNOWLEDGMENTS

This study is partially supported by Personal Robot
Development Project under grant of Next Generation
Technology Development Project.

REFERENCES

[1] Sin-Wook Ryu, KwangWoog Yang, Hong-Seok Kim,

Ho-Gil Lee, “Functionally Distributed Modular Robot
System using Virtual Machine,” Proceedings of ICCAS,
pp.2330-2335, Muju, Korea, Oct. 16-19, 2002.

[2] S. G. Roh, S. M. Baek, D. H. Lee, K. H. Park, T. K.
Moon, S.W. Ryew, J. Y. Kim, T. Y. Kuc, H. S. Kim, H. G.

2288

Lee, H. R. Choi, "Development of Personal Robot
Platform : Approach for Modular Desing," ICCAS, pp.
2313-2318, October 2002.

[3] S. G. Roh, K. H. Park, K. W. Yang, H. S. Kim, H. G. Lee,
and H. R. Choi, "Development of Dynamically
Reconfigurable Personal Robot," ICRA, pp.4023-4028,
2004.

[4] S.G. Roh, K.H. Park, K.W. Yang, J.H. Park, H.S. Kim,
H.G. Lee and H.R. Choi, "Dynamic Infrastructure for
Personal Robot : DynI," ICCAS, pp. 2039 - 2044, 2003.

[5] Richard T. Vaughan, Brian P. Gerkey and Andrew
Howard, “On device abstractions for portable, reusable
robot code,” Proceedings of IROS 2003, Las Vegas,
Nevada, October, 2003.

[6] Brian P. Gerkey, Richard T. /Vaughan and Andrew
Howard, “The Player/Stage Project: Tools for
Multi-Robot and Distributed Sensor Systems,”
Proceedings of ICAR 2003, pp.317-323, June 30 – July 3,
2003, Coimbra, Portugal, 2003.

[7] Brian P. Gerkey, Richard T. Vaughan, Kasper Stoy,
Andrew Howard, Gaurav S. ?sukhatme and Maja J
Mataric, “Most Valuable Player: A Robot Device Server
for distributed Control,” Proceedings of IROS 2001, pp.
1226-1231, Vailea, Hawaii, 29 Oct. - 3 Nov., 2001.

[8] "Common Object Request Broker Architecture: Core
Specification," OMG, Mar. 2004.

[9] Markus Horstmann and Mary Kirtland, "DCOM
Architecture," MSDN, Jul. 1997.

[10] Gun Yoon, Hyoung Yuk Kim, Ju Sung Lee, Hong Seok
Kim, Hong Seong Park, “Middleware Structure for
Personal Robot,”ICCAS, pp. 153-157, Jun. 2003.

[11] KwangWoong Yang, Hong-Seok Kim, Jaehyun Park, “A
Virtual Machine for Modularized Personal Robot
Controller,” Proceedings of ICCAS, pp.2170-2173, Muju,
Korea, Oct. 16-19, 2002.

2289

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

