• Title/Summary/Keyword: Robot Control

Search Result 5,339, Processing Time 0.029 seconds

Control of a mobile robot supporting a task robot on the top

  • Lee, Jang M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.1-7
    • /
    • 1996
  • This paper addresses the control problem of a mobile robot supporting a task robot with needs to be positioned precisely. The main difficulty residing in the precise control of a mobile robot supporting a task robot is providing an accurate and stable base for the task robot. That is, the end-plate of the mobile robot which is the base of the task robot can not be positioned accurately without external position sensors. This difficulty is resolved in this paper through the vision information obtained from the camera attached at the end of a task robot. First of all, the camera parameters were measured by using the images of a fixed object captured by the camera. The measured parameters include the rotation, the position, the scale factor, and the focal length of the camera. These parameters could be measured by using the features of each vertex point for a hexagonal object and by using the pin-hole model of a camera. Using the measured pose(position and orientation) of the camera and the given kinematics of the task robot, we calculate a pose of the end-plate of the mobile robot, which is used for the precise control of the mobile robot. Experimental results for the pose estimations are shown.

  • PDF

The development of general purpose robot language based on real time operating system (실시간 운영 체제를 이용한 범용 로봇 제어 언어의 개발)

  • 이덕만;오종환;이진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.18-23
    • /
    • 1991
  • We need general developing environment to control robot with effect but less energy. So, software and hardware tools are very important. In this paper, we present a general-purpose robot control language and its implementation on Real Time O/S and VME bus system. The system runs on the VMEexec Real Time Operating System and robot program is written in the "C" language. The developed program is linked with the robot control C library io produce an executable image. Under the developed robot control environment, the user can write a general high-level control program leaving all the specific information about the robot in a robot specific file.ific file.

  • PDF

Coordinated Control of a Macro/Micro Robot with Separate Controllers (제어기가 분리 설계된 매크로/마이크로 로봇의 공동작용 제어)

  • Hwang, Jung-Hun;Kwon, Dong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.309-316
    • /
    • 2000
  • A coordination method for a macro/micro robot with separate controllers is proposed and evaluated. The macro/micro robot system generally has independent controllers for the macro and the micro robot respectively. A controller for the coordination of the macro and the micro robot has been designed based on the stable independent controller of each system. The method and trajectory generation method is also proposed to track the moving desired position rapidly. The control method and trajectory generation method is also proposed to track the moving desired position rapidly. The control strategy has been implemented to the macro/micron robot system to evaluate the performance. The experimental results show that the proposed method for maintaining the micro robot within its workspace has uniform performance over the various range of the bandwidth and the proposed trajectory generator is shown to be efficient.

  • PDF

Mobile Control of working robot for a Installed Trolley Cable (전동차 트로이선 가설 작업 로봇의 이동제어)

  • Kim, Sil-Keun;Hong, Soon-Ill;Hong, Jeong-Pyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.934-940
    • /
    • 2006
  • The aims of this study is to develop working robot for a installed trolley cable of an electric train and objective of this paper is to implement mobile control of working robot. In this paper an approach to method for scheme of a mobile control system is presented in a dynamic hybrid velocity/tension control of working robot. The working robot is composed the velocity and tension controllers using the concept of two-degrees-of-freedom servo-controller. This robot moved at same time a certain distance to constrain a constant tension and installed a trolley cable of an electric train. To move the robot the velocity control system have design and implemented. Simulation and experimental results are presented to illustrate the validity of designed mobil scheme.

Integrated SolidWorks & Simscape Platform for the Model-Based Control Algorithms of Robot Manipulators

  • Ahn, Doo-Sung
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • The application of the recent model-based control schemes for robot manipulators require the solution of problems concerning various aspects, from the mechanical design to the necessity of determining a robot model suitable for control, and of experimentally testing the control performances. For one solution, integration of SolidWorks with Simscape for designing and controlling robot manipulators is presented in this paper. The integration provides a platform for rapid control prototyping of robot manipulators without the need for building real prototypes. Mechanical drawings of a robot are first created using Solidworks and imported into the Simscape, where a robot is represented by connected block diagrams based on the principle of physical modeling. Simulation examples for 7-DOF SAM ARM made by Berrett Technology Inc. are testified to show effectiveness of the presented platform.

Path Following Control of Mobile Robot Using Lyapunov Techniques and PID Cntroller

  • Jin, Tae-Seok;Tack, Han-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Path following of the mobile robot is one research hot for the mobile robot navigation. For the control system of the wheeled mobile robot(WMR) being in nonhonolomic system and the complex relations among the control parameters, it is difficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive following controller based on the PID for mobile robot path following. The method uses a non-linear model of mobile robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven nonholonomic mobile robot is carried out in the velocity and orientation tracking control of the nonholonomic WMR. The simulation results of wheel type mobile robot platform are given to show the effectiveness of the proposed algorithm.

Implementation of Real Reality Robot Game for Environment of Ubiquitous Concept (유비쿼터스 개념 환경하에서 실제 현실 로봇 게임 구현)

  • Joo, Byung-Kyu;Jeon, Poongwu;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.977-983
    • /
    • 2005
  • In this paper, novel ubiquitous concept of real reality robot game controlled by a mobile server robot is proposed. Real reality robot game means that two real robots controlled by humans/computers through the internet are playing a boxing game. The mobile server robot captures playing images of the boxing game and sends them to GUI on the screen of human operators' PC. The human operator can login to the boxing game from any computer in any place if he/she is permitted. Remote control of a boxing robot by a motion capture system through network is implemented. Successful motion control of a boxing robot remotely controlled by a motion capture system through network can be achieved. In addition, real boxing games between a human and a computer are demonstrated.

Development of a shared remote control robot for aerial work in nuclear power plants

  • Shin, Hocheol;Jung, Seung Ho;Choi, You Rack;Kim, ChangHoi
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.613-618
    • /
    • 2018
  • We are developing a shared remote control mobile robot for aerial work in nuclear power plants (NPPs); a robot consists of a mobile platform, a telescopic mast, and a dual-arm slave with a working tool. It is used at a high location operating the manual operation mechanism of a fuel changer of a heavy water NPP. The robot system can cut/weld a pipe remotely in the case of an emergency or during the dismantling of the NPP. Owing to the challenging control mission considering limited human operator cognitive capability, some remote tasks require a shared control scheme, which demands systematic software design and integration. Therefore, we designed the architecture of the software systematically.

EXPERIMENT OF CONCRETE FLOOR FINISHING ROBOT

  • Woo, Kwang-Sik;Lee, Ho-Gil;Kim, Jin-Young;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1480-1484
    • /
    • 2004
  • In this paper, a self-propulsive and small concrete floor finishing trowel robot with twin trowels is proposed. Due to the small size and omni-directional moving capability, it is adequate for small space such as apartment. By adjusting the posture of trowels, it can move in any direction without wheels. We used cheap PIC processor for the cost saving design of the modules and adopted mode processors for easy operation of control stick. For the position control of the robot, we made a motion control algorithm appealing to the stepping motor driver module and the wireless communication module between the robot and PC (or control stick). In this paper, we discuss the control problem of the floor finishing robot in order to move to the right position. By comparing experimental result with simulation, we show the validity of the robot mechanism, sensors, and the control system.

  • PDF

A Robot Controller Development of a Large-scale System for Shipbuilding

  • Kim, Soo-Ho;Kang, Gye-Hyung;Park, Ju-Yi;Chu, Gil-Whoan;Kim, Jin-Wook;Kim, Ji-Yun;Kim, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.472-475
    • /
    • 2005
  • This paper present a robot controller developed for shipbuilding yard. Since shipbuilding process handles large work pieces and has dusty and noisy environment, the developed controller has separated architecture into main control part and servo control part. Main control part is located in control room while servo control part is located near robot with work pieces. Commutation between two parts is done through SynqNet and RS485. Air purging system is adapted to servo control part for better reliability. We aimed open architecture in both hardware and software architecture. For open hardware architecture, we employed Compact PCI (cPCI) because it is widely used bus system and very reliable. Since lots of commercial boards are available with cPCI interface, upgrade and reconfiguration is easy. For open software architecture, Windows XP�� Embedded is selected as operating system (OS), because it is very popular OS and most hardware vender supports device driver for the windows XP.

  • PDF