• Title/Summary/Keyword: Robot Collaboration

Search Result 57, Processing Time 0.199 seconds

The Collaboration Framework for Robot Application (로봇 어플리케이션을 위한 협업 프레임워크)

  • Lee, Chang-mug;Kwon, Oh-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.889-891
    • /
    • 2009
  • The utilization of robot application is growing up in recent years, but there is a constraint to execute various application on the robot because of difference of robot resource. This paper presents the framework in order to solve the resource constraint by sharing resources with other devices near by robot. The framework defines common factors that are needed to collaboration work. Furthermore, We show the working flow of framework with an example consisted of robot and some devices in same network.

  • PDF

A Design Methodology of Task Safety Scenario for the Application of Collaborative Robots (협동로봇 활용을 위한 작업안전 시나리오 설계 방법론 연구)

  • Kim, Yull-Hui;Kim, Jin-Oh
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.256-268
    • /
    • 2020
  • This study is about a design method for deriving task safety scenarios for the application of collaborative robots. A five-step process for deriving task safety scenarios for collaborative robots has been proposed, which focuses on the type of collaboration between human and collaborative robot. The three types of collaboration were classified according to the collaboration workspace and the worktime of human and collaborative robot. Based on these three types of collaboration, task safety scenarios include scenarios that predict risk from unintended use during work. Collaboration with collaborative robot is a human-centered process because human actions can create dangerous situations. Besides, we improved the understanding of this design methodology by presenting examples of the application of task safety scenarios according to the process for each type of collaboration.

Estimation of human impedance and its application to collaboration work with robot (인간의 임피던스 추정 및 로봇과의 협력 작업으로의 적용)

  • 홍석규;김창호;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1812-1815
    • /
    • 1997
  • This paper treats the estimation of human impedance and their application to collaboration work robot. Initially, we performa an experiment at whcich teh human becomes a slave and the robot behaves like a master having F/T sensor on its end. the human impedance expressed interms of mass, damping, and stiffness properties are estimated based on the force data measured by F/T sensor and the positiion data of the robot. To show the effectiveness of the estimated human impedance, we perform the second experiment at which the roles of the human and the robot are reversed. It is shown that the robot using the estimated human impedance follows the trajectory commanded by human very smoothly.

  • PDF

Human-Robot Collaboration Work Via Human Impedance Estimation (인간 임피던스 추정을 이용한 인간과 로봇의 협조 작업)

  • Suh, Dong-Soo;Hong, Suk-Kyu;Lee, Byung-Ju;Suh, Il-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.132-140
    • /
    • 1999
  • This paper treats the estimation of human impedance and their application to human-robot collaboration work. Initially, we perform an experiment at which the human becomes a slave and the robot behaves like a master having F/T sensor on its end. The human impedance expressed in terms of mass, damping, and stiffness properties are estimated based on the force data measured by F/T sensor and the commanded position data of the robot. To show the effectiveness of the estimated human impedance, we perform the second experiment at which the roles of the human and the robot are reversed. It is shown that the robot using the estimated human impedance follows the trajectory commanded by human very smoothly.

  • PDF

Industry-Academic Collaboration and Human Resource Development by a 'Specialized Plan for Next Generation' Program -The field of Intelligent Robot (차세대분야 특화계획에 의한 산학협력 및 인력양성 -지능형 로봇분야 사례를 중심으로)

  • Lee, Sang-Ho;Yu, Seung-Nam;Kyung, Jong-Soo;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2126-2133
    • /
    • 2009
  • As expected that a robot-industry will grow up rapidly toward a huge market, many countries try to develop the official policies to support a robot-industry. Following this trend, many robot researches are proceeded in the various technical areas by the government-initiated R&D strategies in Korea. These R&D programs are archived by academic-industrial collaboration and furthermore, include the disseminated linkage of academic-industrial collaboration and the human resource development program which pursues the problem solving and technical training for companies suffered by several technical difficulties. This paper shows the several analyses and considerations of provisional results of these collaboration programs. First, each program of specialized plan for next generation is reviewed and the accomplishment of human resource development for robot research is evaluated. Finally, several considerations are represented for continuous and desirable expansion of these programs.

Development of a 5 DOF Manipulator for Weight Handling based on Counterbalance Mechanism (기계식 중력보상 기반의 중량물 취급용 5자유도 로봇 머니퓰레이터의 개발)

  • Song, Seung Woo;Song, Jae Bok
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.242-247
    • /
    • 2016
  • A robot manipulator handling a heavy weight requires high-capacity motors and speed reducers, which increases the cost of a robot and the risk of injury when a human worker is in collaboration with a robot. To cope with this problem, we propose a collaborative manipulator equipped with a counterbalance mechanism which compensates mechanically for a gravitational torque due to the robot mass. The prototype of the manipulator was designed on the basis of a four-bar linkage structure which contains active and passive pitch joints. Experimental performance evaluation shows that the proposed robot works effectively as a collaborative robot.

A Collaboration Method to Confine a Robot with Multiple Robots (다 개체 로봇의 협업기법에 관한 연구)

  • Choi, Jun-Yong;Kim, Dong-Hwan;Lee, Gui-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.953-964
    • /
    • 2010
  • In this study, we proposed duty executions to confine a robot in a specific place with multiple robots. The proposed method involved the use of a role classifier for assigning labor roles, behavior selector for each robot, and a collaboration manager for handling complex situations. Further, we verified the validity of the proposed method by performing simulations to confine a robot in the specific location by using multiple robots.

The Design of Collaboration Framework for Robot Application (로봇 어플리케이션을 위한 협업 프레임워크 설계)

  • Lee, Chang-Mug;Kwon, Oh-Young
    • The KIPS Transactions:PartA
    • /
    • v.17A no.5
    • /
    • pp.249-258
    • /
    • 2010
  • The utilization of robot application is growing up in recent years, but there is a constraint to execute various application on the robot because of difference of robot resource. This paper presents the framework in order to solve the resource constraint by sharing resources with other devices near by robot. The framework defines common factors that are needed to collaboration work and provides APIs in order to implement robot application easily. Furthermore, We show the working flow of framework with physical training application using robot by example. The application shows how to collaborated work between robot and other devices through network.

Multi-camera-based 3D Human Pose Estimation for Close-Proximity Human-robot Collaboration in Construction

  • Sarkar, Sajib;Jang, Youjin;Jeong, Inbae
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.328-335
    • /
    • 2022
  • With the advance of robot capabilities and functionalities, construction robots assisting construction workers have been increasingly deployed on construction sites to improve safety, efficiency and productivity. For close-proximity human-robot collaboration in construction sites, robots need to be aware of the context, especially construction worker's behavior, in real-time to avoid collision with workers. To recognize human behavior, most previous studies obtained 3D human poses using a single camera or an RGB-depth (RGB-D) camera. However, single-camera detection has limitations such as occlusions, detection failure, and sensor malfunction, and an RGB-D camera may suffer from interference from lighting conditions and surface material. To address these issues, this study proposes a novel method of 3D human pose estimation by extracting 2D location of each joint from multiple images captured at the same time from different viewpoints, fusing each joint's 2D locations, and estimating the 3D joint location. For higher accuracy, the probabilistic representation is used to extract the 2D location of the joints, considering each joint location extracted from images as a noisy partial observation. Then, this study estimates the 3D human pose by fusing the probabilistic 2D joint locations to maximize the likelihood. The proposed method was evaluated in both simulation and laboratory settings, and the results demonstrated the accuracy of estimation and the feasibility in practice. This study contributes to ensuring human safety in close-proximity human-robot collaboration by providing a novel method of 3D human pose estimation.

  • PDF