• Title/Summary/Keyword: Robot Arm control

Search Result 400, Processing Time 0.049 seconds

Design of the controller with sliding mode for flexible robot arm (유연한 로봇 팔의 슬라이딩모드를 갖는 제어기 설계)

  • 김성태;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.547-551
    • /
    • 1996
  • In this paper, robust vibration control of a one-link flexible robot arm based on variable structure system is discussed. We derive dynamic equations of it using a Lagrangian assumed modes method based on Bernoulli-Euler Beam theory. The optimal sliding surface is designed and the problem of chattering is also solved by the adoption of a continuous control law within a small neighborhood of the switching hyperplane.

  • PDF

APPLICATION OF INVERSE DUNAMICS FOR HYBRID TRANSLATIONAL POSITION/FORCE CONTROL OF A FLEXIBLE ROBOT ARM

  • Sasaki, Minoru;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.595-599
    • /
    • 1989
  • A new simple method for controlling compliant motions of a flexible robot arm is presented. The method aims at controlling translational tip motion, force and moment by directly computing the base motion or torque. A numerical inversion of Laplace transform is used to obtain the results in the time domain. The results show the effectiveness of the method for the hybrid translational position/force control of a flexible robot arm.

  • PDF

Experimental Evaluation of Feedforward Control Based on the Dynamic Models of A Direct Drive SCARA Robot (직접구동 평면 다관절 로봇의 동역학적 모델에 따른 피드포워드 제어의 실험적 평가)

  • Hong, Yun-Sik;Kang, Bong-Su;Kim, Su-Hyeon;Park, Gi-Hwan;Kwak, Yun-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.146-153
    • /
    • 1996
  • A SCARA type direct drive robot which can be used in the assembly operation was designed and manufactured. Graphite fiber epoxy composite material was used in the fabrication of the robot arm structure in order to improve the speed of the robot arm with a high damping effect. For model-based control and sensitivity analysis of system parameters, the dynamic model of robot arm and drive servo amplifier parameters such as equivalent gains of PWM driver and velocity gains of servo system were estimated from frequency response tests. The complete dynamic model for overall robot system was used in the simulation of the open-loop control. The simulation results agreed reasonably well to the experimental results. The feedforward control using the dynamic models improved the trajectory tracking performance, decreasing the tracking error by factor of three compared with PID control. This study found that the inverse dynamic model of the robot arm including the drive servo system showed better performances than the case of arm dynamic model only.

Implementation of Wireless Control and Image Monitoring Robot using ARM 9 Embedded System (ARM 9 임베디드 시스템에 의한 무선 제어 및 영상 감시 로봇 구현)

  • Yun, Hyo-Won;Han, Kyong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.166-168
    • /
    • 2007
  • This paper is dealing with how to control of a client robot's movement for instructions from a server PC and a wireless andremote control Robot that sends the server information of images for monitoring. To implement this. 802.11x WLAN with TCP/IP socket programming is used to get the driving instructions from the server PC and control movements of the robot such as a forward, backward and directions. As well as this, ARM9 cored PAX255 embedded processor and Linux OS is used for the function transmitting BMP format of 320 ${\times}$ 240 pixel for stopped image data.

  • PDF

Optimal Variable Damping Control for a Robot Carrying an Object with a Human

  • Hideki, Hashimoto;Chung, W.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25.3-25
    • /
    • 2001
  • This paper describes a control method of a robot cooperating with a human. A task in which a robot and a human move an object cooperatively is considered. To develop the force controller of the robot, the characteristics of human arm are investigated. The arm is forced to move along a trajectory in the experiment and the exerted force and the displacement are analyzed, It is found the force characteristics of the human arm is regarded as an optimal damper with minimizing a cost function. Then, the model is implemented to a robot and the cooperation of the robot and a human operator is examined. The effectiveness of the derived model is investigated and the experimental results show that the human moves the object supported by the robot with a minimum jerk trajectory.

  • PDF

A study on deburring task of robot arm using neural network (신경망을 이용한 ROBOT ARM의 디버링(Deburring) 작업에 관한 연구)

  • 주진화;이경문;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.139-142
    • /
    • 1996
  • This paper presents a method of controlling contact force for deburring tasks. The cope with the nonlinearities and time-varying properties of the robot and the environment, a neural network control theory is applied to design the contact force control system. We show that the contact force between the hand and the contacting surface can be controlled by adjusting the command velocity of a robot hand, which is accomplished by the modeling of a robot and the environment as Mass-Spring-Damper system. Simulation results are shown.

  • PDF

Vibration Suppression Control for an Articulated Robot: Effects of Model-Based Control Applied to a Waist Axis

  • Itoh, Masahiko;Yoshikawa, Hiroshi
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.263-270
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a waist axis of an articulated robot. This technique is based on a model-based control in order to establish the damping effect on the mechanical part. The control model is related to the velocity control loop, and it is composed of reduced-order electrical and mechanical parts. Using this model, the velocity of the load is estimated, which is converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically, and it is added to the velocity command to suppress the transient vibration of a waist axis of the robot arm. The function of this technique is to increase the cut-off frequency of the system and the damping ratio at the driven machine part. This control model is easily obtained from design or experimental data and its algorithm can be easily installed in a DSP. This control technique is applied to a waist axis of an articulated robot composed of a harmonic drive gear reducer and a robot arm with 5 degrees of freedom. Simulations and experiments show satisfactory control results to reduce the transient vibration at the end-effector.

A robust and minimum tracking error controller design for robot arms (로보트 팔에 대한 로버스트하고 추적 오차를 최소화하는 제어기 설계)

  • 김세창;신휘범;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.36-40
    • /
    • 1986
  • This paper describes a design of the dynamic robot arm controller with two points of view, robustness and minimum tracking error. A new approach to the robust control of robot arm is developed and an explicit solution for minimum tracking error control is obtained from the regulator problem in the error space given by modifying the tracking problem. This control law is applied to the SCARA robot and the computer simulation is presented.

  • PDF

Optimal Trajectory Planning for Cooperative Control of Dual-arm Robot (양팔 로봇의 협조제어를 위한 최적 경로 설계)

  • Park, Chi-Sung;Ha, Hyun-Uk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.891-897
    • /
    • 2010
  • This paper proposes a cooperative control algorithm for a dual-arms robot which is carrying an object to the desired location. When the dual-arms robot is carrying an object from the start to the goal point, the optimal path in terms of safety, energy, and time needs to be selected among the numerous possible paths. In order to quantify the carrying efficiency of dual-arms, DAMM (Dual Arm Manipulability Measure) has been defined and applied for the decision of the optimal path. The DAMM is defined as the intersection of the manipulability ellipsoids of the dual-arms, while the manipulability measure indicates a relationship between the joint velocity and the Cartesian velocity for each arm. The cost function for achieving the optimal path is defined as the summation of the distance to the goal and inverse of this DAMM, which aims to generate the efficient motion to the goal. It is confirmed that the optimal path planning keeps higher manipulability through the short distance path by using computer simulation. To show the effectiveness of this cooperative control algorithm experimentally, a 5-DOF dual-arm robot with distributed controllers for synchronization control has been developed and used for the experiments.

Digital control of high speed robot arm vibration (고속 로보트 팔 진동의 디지탈 제어)

  • 박노철;하영균;박영필
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.6-11
    • /
    • 1988
  • Alight-weight robot arm carrying a payload is modelled as a cantilever beam with a tip mass subjected to a high speed rotation. Equations of Motion, for modal control, are represented as discrete state variable form. Digital optimal control law with observer is developed to suppress the arm vibration and control the position of the joint angle. The effects of the number of controlled modes, weighting factors of the performance index, reference rotation time, and sampling time on the control performance are analyzed by computer simulation and experiments.

  • PDF