• Title/Summary/Keyword: Roadway tunnel

Search Result 42, Processing Time 0.02 seconds

Study on failure behaviors of mixed-mode cracks under static and dynamic loads

  • Zhou, Lei;Chen, Jianxing;Zhou, Changlin;Zhu, Zheming;Dong, Yuqing;Wang, Hanbing
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.567-582
    • /
    • 2022
  • In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.

The Composition of Non-methane Hydrocarbons Determined from a Tunnel of Seoul During Winter 2000

  • Kwangsam Na;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E2
    • /
    • pp.69-77
    • /
    • 2000
  • Measurements of non-methane hydrocarbons (NMHC) were carried out in the Sangdo tunnel and on a nearby roadway in Seoul during the during the periods of heavy(low speed with ∼20km h(sup)-1) and light(high speed with ∼60kmh(sup)-1) traffic in February 2000. In the tunnel, the total NMHC levels during the heavy traffic period were higher than those during the light traffic period by a factor of 2. This was due to the increase of emissions at the low vehicle speed period and the higher dilution effect derived from faster flow of tunnel air at the high vehicle speed period. The average total NMHC concentration in the tunnel was 1.7 times as high as that on the roadway. The species with the highest concentration in the tunnel was ethylene(50.1 ppb), followed by n-butane(34.1 ppb) and propane (21.9 ppb). The concentration ranking in the tunnel was generally in good agreement with that on the roadway, suggesting that the NMHC compositions in the tunnel and on the nearby roadway were primarily determined by vehicle exhausts. However, the NMHC compositions in the Sangdo tunnel do not agree well with other foreign study results, reflecting that the characteristics of vehicle exhausts of Seoul is different from those of other cities. The most prominent difference between this study and other studies is the high mass fractions of butanes and propane. It was be attributed to the wide use of butane-fueled vehicles.

  • PDF

Deformation Characteristics and Determination of Deformation Modulus of Rocks around the Lower Gangway during Coal Mining Operation (석탄층 하반갱도 주위암반의 변형특성 및 변형계수 결정연구)

  • 이현주
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.237-250
    • /
    • 1992
  • The cavities formed by the excavation of coal seam cause unstable within rock body, leading to large displacement around adjacent roadway. This displacement brings the closure of roadway and deformation of support. Therefore, it is necessary to understand and predict the deformation characteristics of roadway while coal seam is under excavation. In this study, the observed displacements are compared with the calculated ones through the analysis using Linear Boundary Element Mothod under the elastostatic conditions, in order to determine the virgin stress state and deformation modulus which affect the deformation characteristices.

  • PDF

Case Study of the Longest Roadway Tunnel in Korea, Baehuryeong Tunnel (국내 최장대 양방향 도로터널 설계사례-배후령터널)

  • Lee Seon-Bok;Je Hae-Chan
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.432-440
    • /
    • 2005
  • Baehuryeong tunnel connects Chuncheon with Hwacheon in Kangwon, Korea, This tunnel is a single tunnel with 5,057 m long and two bidirectional lanes which will be extended into low lanes in the future. The estimated construction period of Baehuryeong tunnel is approximately 55 months. This tunnel will become the longest bidirectional roadway tunnel in Korea. Compared to a twin tunnel, a bidirectional single tunnel has two major disadvantages with regard to the ventilation system and ease of escape during fire. For these reasons, a service tunnel and the transverse ventilation system are planned first time in Korea. In case of fire, the tunnel ventilation design aims to maintain a smoke free layer for passenger evacuation. The geology of Baehuryeong tunnel site is mainly composed of gneiss and granite. Baehuryeong fault is a mainly large scale fault which stands vertical and parallels with tunnel direction. The influenced zone of this fault is within 70 m. Baehuryeong tunnel was designed that it was separated with the distance of more than 100 m from Baehuryeong fault for its safety.

Case Study and Standard Process Analysis of Change Order in Design for Road Tunnel Project (터널공사 사례분석에 의한 설계변경 표준프로세스 구성방안)

  • Kang Leen-Seok;Kim Dong-Kwang;Jung Won-Myoung;Lee Seung-Ryul;Kim Hyun-Soo
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1149-1152
    • /
    • 2005
  • Recently, tunnel structure is being widely used in railway or roadway construction projects because earthwork causes large cutting and damages in environmental factors. However, there are many changes of design by different items comparing with design phase in tunnel structure by uncertain drawings. This study develops a standard process for the change of design to reduce change orders in construction phase.

  • PDF

Comparison between wind load by wind tunnel test and in-site measurement of long-span spatial structure

  • Liu, Hui;Qu, Wei-Lian;Li, Qiu-Sheng
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.301-319
    • /
    • 2011
  • The full-scale measurements are compared with the wind tunnel test results for the long-span roof latticed spatial structure of Shenzhen Citizen Center. A direct comparison of model testing results to full-scale measurements is always desirable, not only in validating the experimental data and methods but also in providing better understanding of the physics such as Reynolds numbers and scale effects. Since the quantity and location of full-scale measurements points are different from those of the wind tunnel tests taps, the weighted proper orthogonal decomposition technique is applied to the wind pressure data obtained from the wind tunnel tests to generate a time history of wind load vector, then loads acted on all the internal nodes are obtained by interpolation technique. The nodal mean wind pressure coefficients, root-mean-square of wind pressure coefficients and wind pressure power spectrum are also calculated. The time and frequency domain characteristics of full-scale measurements wind load are analyzed based on filtered data-acquisitions. In the analysis, special attention is paid to the distributions of the mean wind pressure coefficients of center part of Shenzhen Citizen Center long-span roof spatial latticed structure. Furthermore, a brief discussion about difference between the wind pressure power spectrum from the wind tunnel experiments and that from the full-scale in-site measurements is compared. The result is important fundament of wind-induced dynamic response of long-span spatial latticed structures.

Stability Analysis of Mine Roadway Using Laboratory Tests and In-situ Rock Mass Classification (실내시험과 현장암반분류를 이용한 광산갱도의 안정성 해석)

  • Kim, Jong Woo;Kim, Min Sik;Lee, Dong Kil;Park, Chan;Jo, Young Do;Park, Sam Gyu
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.212-223
    • /
    • 2014
  • In this study, the stability analyses for metal mine roadways at a great depth were performed. In-situ stress measurements using hydrofracturing, numerous laboratory tests for rock cores and GSI & RMR classifications were conducted in order to find the physical properties of both intact rock and in-situ rock mass distributed in the studied metal mine. Through the scenario analysis and probabilistic assessment on the results of rock mass classification, the in-situ ground conditions of mine roadways were divided into the best, the average and the worst cases, respectively. The roadway stabilities corresponding to the respective conditions were assessed by way of the elasto-plastic analysis. In addition, the appropriate roadway shapes and the support patterns were examined through the numerical analyses considering the blast damaged zone around roadway. It was finally shown to be necessary to reduce the radius of roadway roof curvature and/or to install the crown reinforcement in order to enhance the stability of studied mine roadways.

A Study on the Behavior of a Closely-Spaced Tunnel by Using Scaled Model Tests (축소모형실험을 통한 근접터널의 거동에 관한 연구)

  • Ahn, Hyun-Ho;Choi, Jung-In;Lee, Seok-Won;Shim, Seong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.189-198
    • /
    • 2008
  • Lots of roadway tunnel have been almost constructed in forms of closely-spaced tunnel in korea. If closely-spaced tunnel is not constructed at a sufficient distance between tunnels, the problem of stability can occur. However, the case that can not secure a sufficient distance between tunnels can occur due to a difficulty in buying a lot and an issue of popular complaint and environmental disruption. Generally, tunnels are not influenced by each other when a center distance between tunnels is two times longer than tunnel diameter under the complete elastic ground and five times under the soft ground. In this study, the scaled model tests of closely-spaced tunnel by using homogeneous material were performed and induced displacements were measured around the tunnel openings during excavation. The influence of distance between tunnels on the behavior of closely-spaced tunnel was investigated.

  • PDF

Development of Tunnel Asset Management (TAM) Program

  • Hamed Zamenian;Dae-Hyun (Dan) Koo
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.576-582
    • /
    • 2013
  • Typical highway infrastructure systems include roadway pavement, drainage systems, tunneling, and other hardware components such as guardrails, traffic signs, and lighting. Tunnels in a highway system have provided significant advantages to overcoming various natural challenges including crossing underneath bodies of water or through mountainous areas. While only a few tunnel failure cases have been reported, the failure rate is likely to increase as these assets age and because agencies have not emphasized tunneling asset management. A tunnel system undergoes a deterioration life cycle pattern that is similar to other infrastructure systems. There are very few agencies in the United States implementing comprehensive tunnel asset management programs. While current tunnel asset management programs focus on inspection, maintenance, and operation safety, there is an increasing need for the development of a comprehensive life cycle tunnel asset management program. This paper describes a conceptual framework for a comprehensive tunnel asset management program. The framework consists of three basic phases including a strategic plan, a tactical plan, and an operational plan to provide better information to the decision makers. The strategic plan is a basic long term approach of tunnel asset management. The tactical plan determines specific objectives and the operational plan actually applies asset management objectives in practice. The information includes operational condition, structural condition, efficiency of the system, emergency response, and life cycle cost analysis for tunnel capital improvement project planning.

  • PDF