DOI QR코드

DOI QR Code

Stability Analysis of Mine Roadway Using Laboratory Tests and In-situ Rock Mass Classification

실내시험과 현장암반분류를 이용한 광산갱도의 안정성 해석

  • 김종우 (청주대학교 토목공학과) ;
  • 김민식 ((주)나노지오이엔씨) ;
  • 이동길 (한국지질자원연구원 광물자원연구본부 탐사개발연구실) ;
  • 박찬 (한국지질자원연구원 지구환경연구본부) ;
  • 조영도 (한국지질자원연구원 광물자원연구본부 탐사개발연구실) ;
  • 박삼규 (한국지질자원연구원 광물자원연구본부 탐사개발연구실)
  • Received : 2014.05.13
  • Accepted : 2014.06.09
  • Published : 2014.06.30

Abstract

In this study, the stability analyses for metal mine roadways at a great depth were performed. In-situ stress measurements using hydrofracturing, numerous laboratory tests for rock cores and GSI & RMR classifications were conducted in order to find the physical properties of both intact rock and in-situ rock mass distributed in the studied metal mine. Through the scenario analysis and probabilistic assessment on the results of rock mass classification, the in-situ ground conditions of mine roadways were divided into the best, the average and the worst cases, respectively. The roadway stabilities corresponding to the respective conditions were assessed by way of the elasto-plastic analysis. In addition, the appropriate roadway shapes and the support patterns were examined through the numerical analyses considering the blast damaged zone around roadway. It was finally shown to be necessary to reduce the radius of roadway roof curvature and/or to install the crown reinforcement in order to enhance the stability of studied mine roadways.

본 연구에서는 고심도 금속광산갱도에 대한 안정성 해석을 수행하였다. 이를 위해 수압파쇄법으로 암반의 초기지압을 측정하였고, 현장에서 채취한 암석코어로 수많은 실내물성시험을 실시하여 무결암의 물성 값을 산출하였으며, 현장조사를 통해 GSI, RMR 분류법으로 암반을 분류하였다. 암반분류 결과에 대한 시나리오 분석과 확률론적 평가를 통해 광산 갱도를 최상조건, 평균조건, 최하조건으로 구분하였으며, 각 조건별 탄소성해석을 통해 갱도의 안정성을 평가하였다. 또한, 갱도의 형상과 발파손상대의 영향을 고려한 해석을 통해 갱도의 적절한 규격과 지보패턴을 조사하였는데, 본 광산 갱도의 안정성 제고를 위해서는 갱도의 천반 곡률반경을 감소시키거나 천정부 보강이 필요한 것으로 나타났다.

Keywords

References

  1. Kim, J.W. and Lee, H.K., 1994, A study on the deformation behavior of steel support and the determination of support loads in deep tunnels, Journal of the Korean Society of Mineral and Energy Resources Engineers, 31.1, 60-69.
  2. Chung, S.K. and Synn, J.H., 2004, Elasto-plastic analysis and in-situ measurement on rock behaviors with stepwise excavation of the steep soft seam at a great depth, Tunnel and Underground Space, 14.4 295-303.
  3. Han K.C. and Jeon, Y.S., 2005, Evaluation of the stability for underground tourist cavern in an abandoned mine, Tunnel and Underground Space, 15.6, 425-431.
  4. Sunwoo, C., Karanam, U.M.R., Chung S.K. and Jeon, Y.S., 2004, A study on the characteristics of rock mass by GSI in limestone mine, Tunnel and Underground Space, 14.2, 86-96.
  5. Koo, C.M., Jeon S.W. and Lee, I.W., 2008, Underground mine design and stability analysis at a limestone mine, Tunnel and Underground Space, 18.4 243-251.
  6. Kim, J.G., Yang, H.S., Kim, W.B., Jang M.H. and Ha, T.W., 2010, Stability Analysis on the crushing facility space in mine tunnel, Tunnel and Underground Space, 20.3,. 145-152.
  7. Yoon, Y.K., Kim B.C. and Jo, Y.D., 2010, Creep characteristics of granite in gagok mine, Tunnel and Underground Space, 20.5, 390-398.
  8. KIGAM, 2008, Construction of deep underground research laboratory and core technology development, GP2008-005-2008(2).
  9. KIGAM, 2011, development of underground energy storage system in lined rock cavern, GP2009-019-2011(3).
  10. Korean Society for Rock Mechanics, 2010, Standard test method for rock, CIR, Seoul.
  11. Hoek, E. and Brown, E.T., 1997, practical estimates of rock mass strength, Int. J. of Rock Mech. Min. Sci. 34, 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  12. Bieniawski, Z.T., 1989, Engineering rock mass classifications, New York, Wiley.
  13. Hoek, E., Carranza-Torres, C. and Corkum, B., 2002, Hoek-Brown criterion - 2002 edition. Proc. NARMS-TAC Conference, Toronto, 1, 267-273.
  14. Lee, Y.S., Park, D.H., Sunwoo, C., Kim G.W. and Kang, J.S., 2012, Numerical design approach to determining the dimension of large-scale underground mine structures, Tunnel and Underground Space, 22.2 120-129. https://doi.org/10.7474/TUS.2012.22.2.120
  15. Kim, J.W., 1996, Deformation behaviors of arches openings related with roof curvature, Tunnel and Underground Space, 6.1 10-18.

Cited by

  1. The Mechanical Properties of Rocks Distributed at a Metal Mine in Jeongseon vol.25, pp.3, 2015, https://doi.org/10.7474/TUS.2015.25.3.231
  2. Prediction of the Groundwater Inflow by Three-dimensional Hydrogeologic Modelling at an Underground Mine vol.55, pp.5, 2018, https://doi.org/10.32390/ksmer.2018.55.5.383