• Title/Summary/Keyword: Road-load

Search Result 630, Processing Time 0.022 seconds

A Study on Behavior Characteristics of Precast Coping Part under Axial Load (축하중을 받는 프리캐스트 코핑부의 거동 특성 연구)

  • Won, Deok-Hee;Lee, Dong-Jun;Kim, Seung-Jun;Kang, Young-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • Recently, bridge construction technology has made great progress from development of high performance materials and new bridge types. However, most technology are based on methods of cast-in-place and material cost saving. The method of cast-in-place concrete causes environmental damages and costumer complaints. Especially, under bad weather conditions, the construction can not proceed. To overcome these disadvantages, new construction methods were developed to reduce construction time. These methods are called precast method. Most prefabricated methods have been applied to superstructure constructions of bridges, but very minutely applied to substructure constructions. The most important agendas on precast method are light weight and transportability of the precasted members, because very strict transporting specifications exist for road transportation of the precasted members. For example, the weight and length of coping members may be larger than the available transporting vehicles. Although column is constructed by precast method to save construction time, if coping member is constructed by cast-in-place method, then the column construction time reduction becomes meaningless. Therefore, in this study, a new precast coping member and a connecting system of column-coping member are proposed. The proposed method is verified by analyzing their ultimate performance through analysis and experimental study.

Suggestion of Modified Compression Index for secondary consolidation using by Nonlinear Elasto Viscoplastic Models (비선형 점탄소성 모델을 이용한 2차압밀이 포함된 수정압축지수개발)

  • Choi, Bu-Sung;Im, Jong-Chul;Kwon, Jung-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1115-1123
    • /
    • 2008
  • When constructing projects such as road embankments, bridge approaches, dikes or buildings on soft, compressible soils, significant settlements may occur due to the consolidation of these soils under the superimposed loads. The compressibility of the soil skeleton of a soft clay is influenced by such factors as structure and fabric, stress path, temperature and loading rate. Although it is possible to determine appropriate relations and the corresponding material parameters in the laboratory, it is well known that sample disturbance due to stress release, temperature change and moisture content change can have a profound effect on the compressibility of a clay. The early research of Tezaghi and Casagrande has had a lasting influence on our interpretation of consolidation data. The 24 hour, incremental load, oedometer test has become, more or less, the standard procedure for determining the one-dimensional, stress-strain behavior of clays. An important notion relates to the interpretation of the data is the ore-consolidation pressure ${\sigma}_p$, which is located approximately at the break in the slope on the curve. From a practical point of view, this pressure is usually viewed as corresponding to the maximum past effective stress supported by the soil. Researchers have shown, however, that the value of ${\sigma}_p$ depends on the test procedure. furthermore, owing to sampling disturbance, the results of the laboratory consolidation test must be corrected to better capture the in-situ compressibility characteristics. The corrections apply, strictly speaking, to soils where the relation between strain and effective stress is time independent. An important assumption in Terzaghi's one-dimensional theory of consolidation is that the soil skeleton behaves elastically. On the other hand, Buisman recognized that creep deformations in settlement analysis can be important. this has led to extensions to Terzaghi's theory by various investigators, including the applicant and coworkers. The main object of this study is to suggestion the modified compression index value to predict settlements by back calculating the $C_c$ from different numerical models, which are giving best prediction settlements for multi layers including very thick soft clay.

  • PDF

Determination of EMCs for Rainfall Ranges from Transportation Landuses (교통관련 토지이용에서의 강우계급별 EMC 산정)

  • Lee, So-Young;Maniquiz, Marla C.;Choi, Ji-Yeon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.67-76
    • /
    • 2009
  • The contribution of pollutant loadings from non-point source (NPS) to the four major rivers in Korea exceeded 22~37 % of the total loadings in 2004 and is expected to reach 60 % in 2020. Most of NPS loadings are coming from urban areas, especially from paved areas. Because of high imperviousness rate, many types of NPS pollutant are accumulating on the surface during dry periods. The accumulated pollutants are wash-off during a storm and highly degrading the water quality of receiving water bodies. For this reason, the Korean Ministry of Environment (MOE) developed the Total Maximum Daily Load (TMDL) program to protect the water quality by managing the point source and NPS loadings. NPS has high uncertainties during a storm because of the characteristics of rainfall and watershed areas. The rainfall characteristics can affect on event mean concentrations (EMCs), mass loadings, flow rate, etc. Therefore, this research was performed to determine EMCs for rainfall ranges from transportation landuses such as road and parking lot. Two sites were monitored over 45 storm events during the 2006/06 through 2008/10 storm seasons. Mean TSS EMCs decrease as rainfall ranges increase and highest at less than 10mm rainfall. The results of this study can be used to determine the efficient scale of BMP facility considering specific rainfall range.

  • PDF

A Study on the Landscape adjective characteristics for the Major Landscape Elements in Organic farming (유기농업단지 주요경관요소의 경관형용사 특성에 관한 연구)

  • An, Phil-Gyun;Eom, Sung-Jun;Kim, Nam-Chun;Kim, Sang-Bum
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.4
    • /
    • pp.69-84
    • /
    • 2020
  • Up to date, the majority research on the major landscape elements in organic farming has been mainly focused on the practice of seeking efficiency. The problem is that this type of study contributes to polluting the agricultural environment and damaging the ecological circulation system. As an alternative, there is a growing body of research on organic farming, but it is not widely applied that research on how to manage the landscape considering the scenic characteristics of farming villages practicing organic farming. Hence, in this paper we utilized landscape adjectives as a way to enhance the objectivity of the organic agricultural complex landscape assessment. More specifically, not only this study used a landscape image of an organic agricultural complex to identify a landscape adjective suitable for the landscape elements but also this study confirmed the suitability of landscape adjectives comparing to the opinions of experts and the public. To carry out, this study performed the experts survey which is composed of 12 major landscape elements, including rice paddies and fields, monoculture and diverse crops, dirt roads, windbreak trees, accent planting, dum-bung(small pond), natural small river, natural waterways, plastic film houses, one-storied houses, and pavilion. As a result of deriving the landscape adjectives from the main landscape elements, there were nine landscape adjectives that were consistent with experts and the public, including "clear" and "Artless" for rice paddies and fields, while the mismatched landscape adjectives were 'traditional'. The accent planting was a combination of landscape adjectives such as 'natural' and 'clear', while the windbreak trees was a consensus of all landscape adjectives. Only two adjectives, 'friendly' and 'wild', agreed on the dirt load, nine dum-bung(small pond), ten natural small river, nine duckery, eight one-storied houses, 10 pavilion, eight monoculture and diverse crops, and three natural waterways. The most common landscape adjectives were windbreak trees, pavilions, and natural small river, all 10 landscape adjectives. However, it is considered that only three of the 10 landscape types on the dirt road and the natural number are matched. Thus, additional management measures will be needed. In addition, it was analyzed that the most common landscape adjectives were "Artless" and "friendly" 13 times. The landscape adjectives of the organic farming complex responded by experts were analyzed to be suitable for natural, clear, zingy, silent, traditional, artless, friendly, wild and Leisurely, and consistent with the general public's opinion.

Analysis of Apparatus Variables for Deformation Strength Test of Asphalt Concrete Based on Correlation with Rutting and Prediction Model for Rutting (소성변형과의 상관성 및 추정모델을 통한 변형강도 시험장치 변수 분석)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Sung-Tae;Lee, Soon-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.41-52
    • /
    • 2002
  • This study dealt with analysis of size effect of testing apparatus for Kim test which measures rut resistance characteristics of asphalt mixture under static loading. Two columns in different diameter with each column having different radios of round cut (Curvature) at the bottom were used for testing asphalt mixture. Deformation load ($P_{max}$) and deformation strength ($K_D$) were found to have relatively high correlation with rut depth and dynamic stability of asphalt concrete. Diameter of specimen was not a significant factor in this test. From the statistical correlation analysis with rutting properties, the radius of curvature and diameter of loading column were found to be important factor affecting the results of the test. Among the radios (r) of curvatures, r=0.5cm and 1.0cm showed much higher correlation than the column without curvature, and r=1.0cm being better between the two. The column with diameter of 4cm showed better correlation than diameter of 3cm. Therefore, the column of 4cm diameter with r=1.0cm was found to be the best among various apparatus sizes. Prediction models for rut depth and dynamic stability were developed for each aggregate mixture based on Kim test variables using SAS STEPWISE procedure. Therefore, if this test method is validated through further study, Kim test can be used for selecting asphalt mixture with the highest resistance against permanent deformation.

  • PDF

An Experimental Study on the Creep Behavior of Frozen Sand (동결 사질토의 크리프 거동에 관한 실험적 연구)

  • Chae, Deokho;Kim, Youngseok;Lee, Jangguen;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.27-36
    • /
    • 2014
  • Due to the latitudinal location of Korea, the seasonally frozen ground has been focused on as research topics such as the frost heaving under the asphalt road rather than the permafrost ground. However, the recent construction of the second Korean Antarctic research station, the Jangbogo station and the participation on the development of the natural gas pipeline in Russia arouse the research interests on the behavior of the permafrost ground. At the design process of the geotechnical structures on the permafrost ground, the evaluation of the creep characteristics of the frozen soil is very crucial. Since the domestic specification on the frozen soil testing does not exist currently, it is necessary to evaluate the creep characteristics of frozen soils systematically with regard to the affecting factors. Therefore, the creep characteristics of the frozen specimens of dense Jumoonjin sand were evaluated under various loads at -5 and $-10^{\circ}C$. Based on the test results, as the load became close to the strength and the temperature became lower, the duration of the secondary creep became shorter and more distinct tertiary creep responses were observed.

Pillar stability in very near-twin tunnels (초근접 병설터널의 필라 안정성 확보)

  • Kim, Donggyou;Koh, Sungyil;Lee, Jeongyong;Lee, Chulhee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.699-714
    • /
    • 2022
  • The objective of this study is to suggest a safe and economical pillar reinforcement method when very near-twin tunnels with a minimum interval of 1 m passes through a soft zone such as weathered soil or weathered rock. A standard cross-sectional view of a two-lane road tunnel was applied to suggest a pillar reinforcement method for the very near-twin tunnels. The thickness of the pillar was 1 m. The ground condition around the tunnel was weathered soil or weathered rock. There were four reinforcement methods for pillar stability evaluation. These were rock bolt reinforcement, pre-stressed steel strand reinforcement, horizontal steel pipe grouting reinforcement, horizontal steel pipe grouting + prestressed steel strand reinforcement. When the ground condition was weathered soil, only the pillar reinforced the horizontal steel pipe grouting + prestressed steel strand did not failed. When the ground condition was weathered rock, there were no failure of the pillar reinforced the horizontal steel pipe grouting or the horizontal steel pipe grouting + prestressed steel strand. It is considered that the horizontal steel pipe grouting reinforcement played a role in increasing the stability of the upper part of the pillar by supporting the upper load applied to the upper part of the pillar.

International Research Status on Spent Nuclear Fuel Structural Integrity Tests Considering Vibration and Shock Loads Under Normal Conditions of Transport (정상운반조건의 진동 및 충격하중을 고려한 사용후핵연료의 구조적 건전성 시험평가 해외연구현황)

  • Lim, JaeHoon;Cho, Sang Soon;Choi, Woo-seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.167-181
    • /
    • 2019
  • Currently, the development of evaluation technology for vibration and shock load characteristics and spent nuclear fuel structural integrity under normal conditions of transport is being conducted in the Republic of Korea. This is the first such research conducted in the Republic of Korea and, thus, previous international studies need to be investigated and will be referred to in the ongoing project. Before 2000, several studies related to measurement of vibration and shock loads on spent nuclear fuel were conducted in the US. US national research institutes conducted uniaxial fuel assembly shaker tests, concrete block tests, and multi-axis fuel assembly tests between 2009 and 2016. In 2017, multi-modal transportation tests including road, sea, and rail transport were also performed by research institutes from the US, Spain and the Republic of Korea. Therefore, test preparation procedures, acceleration and strain measurement results, and finite-element and multi-body dynamics analysis were investigated. Based on the measured strain data, the preliminary conclusion was obtained that the measured strain was too small to cause damage to spent nuclear fuel rods. However, this conclusion is a preliminary conclusion that only reviews part of the results; a detailed review is being conducted in the US. The investigation of international studies on spent nuclear fuel structural integrity tests considering vibration and shock loads under normal conditions of transport in the US will be useful data for the project being conducted in the Republic of Korea.

Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel (개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구)

  • Kim, Hak Joon;Lee, Gyu-Phil;Lim, Chul Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2019
  • The behavior of the 3 hinged precast arch structure was investigated by comparing field measurements with numerical analyses performed for precast lining arch structures, which are widely used for the open-cut tunnel. According to the field measurements, the maximum vertical displacement occurred at the crown with upward displacements during the backfilling up to the crown of the arch and downward displacements at the backfill height above the crown. The final crown displacement was 19 mm upward from the original position. The horizontal displacement at the sidewall, which had a maximum horizontal displacement, occurred inward of the arch when compacting the backfill up to the crown and returned to the original position after completing the backfill construction. According to the analysis of displacement measurements, economical design is expected to be possible for precast arch structures compared to rigid concrete structures due to ground-structure interactions. Duncan model gave good results for the estimation of displacements and deformed shape of the tunnel according to the numerical analyses comparing with field measurements. The earth pressure coefficients calculated from the numerical analyses were 0.4 and 0.7 for the left and the right side of the tunnel respectively, which are agreed well with the eccentric load acting on the tunnel due to topographical condition and actual field measurements.

A Study on Performance of Steel Monocell Expansion Joints (강재형 모노셀 신축이음장치 성능 연구)

  • Kim, Yong-Hoon;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.502-509
    • /
    • 2019
  • Studies have been made on performance evaluation of expansion joint systems for an ordinary highway or road bridge. However little study has been made for runway connection bridges at airports. A study on performance evaluated from computer code analysis and shrinkage, extension, and compression repetition tests based on KS F 4425 is conducted to a newly developed expansion joint system which has been installed in a runway connection bridge at Incheon Airport Extension 2 Construction Site. The MIDAS computer code is used to analyze the performance before the manufacture of the mock-up of expansion joint system on the basis of design requirements. Tests based on the KS F 4425 of 2001 year-version are conducted for the mock-up. Domestic codes and standards to validate the performance of the expansion joint system in a connection bridge have been developed for a vehicle. However the expansion joint system tested in this study is installed in a runway connection bridge for an aircraft. Conservatively the heaviest one among airplanes departing and landing at Incheon Airport is assumed level-F $468.4kN/m^2$ and adopted for the tests and analyses in this study. KS F 4425 method is selected for the shrinkage, extension, and compression repetition tests. No remarkable problem was observed for the 2,500-cycle shrinkage and extension and two million-cycle repeatition load tests. The results of this study are expected to contribute to establishment of code and standard for the performance validation of an expansion joint system installed in a runway connection bridge for an aircraft by providing performance test results and computer analysis results based on finite element methods.