• Title/Summary/Keyword: Road tunnel

Search Result 588, Processing Time 0.026 seconds

A Case Study on Reinforcement of Slope in PAP Retaining Wall using Back Analysis (PAP옹벽에서 역해석을 이용한 사면보강 사례 연구)

  • Kim, Jang-Deuk;Kim, Yong-Ha
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.345-350
    • /
    • 2009
  • The endpoint of the Yangbuk tunnel constructed at the national road between Gyeongju and Gampo is composed of massive cutting because the road is driven through the sides of mountain. PAP(Prestressed Anchor and PC Pannel) retaining wall as a slope stability method was established over this section. Part of the anchor in PAP wall became broken after six months. We performed inverse analysis through its measurements obtained until that time. An geological investigation to confirm the condition of ground layering and the attraction force test to find as to whether some errors might be present in the anchor were made. According to the back analysis, it was turned out that the value with soil parameter 90% that was applied to the original design was pertinent. In the redesign, the permissible stress in the anchor body was changed from 306 kN to 591 kN and 784 kN and the fixation position was increased from 11.0 m to 23.0 m. Nevertheless, five months have passed since the exchange of the anchor, the measurement results validate that stable state has been maintained. This research is considered a case that the immediate maintenance helps prevent the slope accidents.

Calculation of a Diesel Vehicle's Carbon Dioxide Emissions during Haulage Operations in an Underground Mine using GIS (GIS를 이용한 지하광산 디젤 차량의 운반작업 시 탄소배출량 산정)

  • Park, Boyoung;Park, Sebeom;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.373-382
    • /
    • 2015
  • This study presents a method to calculate carbon dioxide emissions of diesel vehicles operated in an underground mine using Geographic Information Systems (GIS). An underground limestone mine in Korea was selected as the study area. A GIS database was constructed to represent the haulage roads as a 3D vector network. The speed of dump trucks at each haulage road was investigated to determine the carbon dioxide emission factor. The amount of carbon dioxide emissions related to the truck's haulage work could be calculated by considering the carbon dioxide emission factor at each haulage road and the haulage distance determined by GIS-based optimal route analysis. Because diesel vehicles are widely utilized in the mining industry, the method proposed in this study can be used and further improved to calculate the amount of carbon dioxide emissions in mining sites.

A study on practical use of remote automatic fire extinguishing equipment through test bed in road tunnel (도로터널용 원격 자동소화 설비의 test bed 적용을 통한 실용화 방안 연구)

  • Park, Sang-Heon;An, Sung-Joo;Kim, Jae-Hoon;Kim, Kyung-soo;Yun, Jun-Su;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.837-847
    • /
    • 2019
  • Korea's long underground roads are being promoted around the metropolitan city center to realize advanced transportation networks. Many disaster prevention facilities are applied to secure fire safety of the closed and long-distance underground roads. As the facility response and fire suppression subjects are unclear, additional human and material damages from fire spread are inevitable. Therefore, in this study, we developed a remote automatic fire extinguishing system that uses the fire extinguishing water inside the fire hydrant to monitor the CCTV in the management room and sprays it directly to the fire site through automatic control. The design application method was studied through the performance improvement that can be put into practical use.

A study on the effective fire and smoke control in transverse oversized exhaust ventilation (횡류식 선택대배기환기에서의 배연특성에 관한 연구)

  • Han, Sang-Pil;Jeon, Yong-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.451-462
    • /
    • 2011
  • The smoke control system plays the most important role in securing evacuation environment when a fire occurs in road tunnels. Smoke control methods in road tunnels are classified into two categories which are longitudinal ventilation system and transverse ventilation system. In this study it is intended to review the characteristics of smoke behavior by performing numerical analysis for calculating the optimal smoke exhaust air volume with scaled-model and simulation when a fire occurs in tunnels in which transverse ventilation is applied, and for obtaining the basic data required for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions for various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173m^3/s$, $236m^3/s$ for the distance of the smoke moving which can limit the distance to 250 m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

A Study on the Performance Evaluation System of Conventional(ASSM) Road Tunnels (재래식(ASSM) 도로터널의 성능평가 체계 연구)

  • Park, Kwang-Rim;Chung, Jee-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.27-36
    • /
    • 2018
  • Although the current evaluation system has been revised four times since it was revised in 1996, it is insufficient to utilize it as a basis for predicting the performance degradation from the long-term viewpoint and prioritization decision for the budget input due to the evaluation system limited to securing the structural safety. Therefore, this study proposes a new evaluation system suitable for the performance evaluation of conventional (ASSM) tunnels among the various types of existing road tunnels using Delphi technique and AHP technique. Since the existing evaluation systems and evaluation items in domestic and overseas are limited in scope of evaluation criteria, the survey was conducted in conjunction with closed questionnaires on existing items and open questionnaires for eliciting new items. The validity of the questionnaire results were verified and the performance evaluation factors suitable for conventional (ASSM) tunnels were derived. After calculating weighted value of the derived evaluation item using AHP technique, a new evaluation system is proposed to meet the characteristics of the ASSM tunnel, so that they can be used as reference materials for revising and supplementing detailed guidelines of performance evaluation in the future.

Lateral alveolar ridge augmentation procedure using subperiosteal tunneling technique: a pilot study

  • Kakar, Ashish;Kakar, Kanupriya;Sripathi Rao, Bappanadu H.;Lindner, Annette;Nagursky, Heiner;Jain, Gaurav;Patney, Aditya
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.3.1-3.8
    • /
    • 2018
  • Background: In this research article, we evaluate the use of sub-periosteal tunneling (tunnel technique) combined with alloplastic in situ hardening biphasic calcium phosphate (BCP, a compound of β-tricalcium phosphate and hydroxyapatite) bone graft for lateral augmentation of a deficient alveolar ridge. Methods: A total of 9 patients with deficient mandibular alveolar ridges were included in the present pilot study. Ten lateral ridge augmentation were carried out using the sub-periosteal tunneling technique, including a bilateral procedure in one patient. The increase in ridge width was assessed using CBCT evaluation of the ridge preoperatively and at 4 months postoperatively. Histological assessment of the quality of bone formation was also carried out with bone cores obtained at the implant placement re-entry in one patient. Results: The mean bucco-lingual ridge width increased in average from 4.17 ± 0.99 mm to 8.56 ± 1.93 mm after lateral bone augmentation with easy-graft CRYSTAL using the tunneling technique. The gain in ridge width was statistically highly significant (p = 0.0019). Histomorphometric assessment of two bone cores obtained at the time of implant placement from one patient revealed 27.6% new bone and an overall mineralized fraction of 72.3% in the grafted area 4 months after the bone grafting was carried out. Conclusions: Within the limits of this pilot study, it can be concluded that sub-periosteal tunneling technique using in situ hardening biphasic calcium phosphate is a valuable option for lateral ridge augmentation to allow implant placement in deficient alveolar ridges. Further prospective randomized clinical trials will be necessary to assess its performance in comparison to conventional ridge augmentation procedures.

Water Jet Experiment of Automatic Fire-tracking Water Cannon Facility combined with Indoor Hydrant Facility in Road Tunnels (도로터널의 옥내소화전설비 겸용 자동화점추적 방수총설비의 방수실험)

  • Kim, Chang-Yong;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • To determine if water-jet nozzle moves and water jetting are effective according to the location of the fire, this study examined the automatic fire-tracking water cannon system and aan indoor hydrant system, such as water jet centered directivity, water jet range maintainability and water jet shape uniformity. First, an examination to find the center of fire accurately from this system design showed that the water jet centered test was accurate. Second, the water jet range test results showed that when water is jetted at the maximum water jet radius, the water jet shows an inaccurate result but within the allowable tolerance range. Finally, the water-jet shape test result confirmed that there are no problems in setting the block from the algorithm design.

Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test

  • Li, Yongle;Hu, Peng;Xu, You-Lin;Zhang, Mingjin;Liao, Haili
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.145-167
    • /
    • 2014
  • Wind-vehicle-bridge (WVB) interaction can be regarded as a coupled vibration system. Aerodynamic forces and moment on vehicles and bridge decks play an important role in the vibration analysis of the coupled WVB system. High-speed vehicle motion has certain effects on the aerodynamic characteristics of a vehicle-bridge system under crosswinds, but it is not taken into account in most previous studies. In this study, a new testing system with a moving vehicle model was developed to directly measure the aerodynamic forces and moment on the vehicle and bridge deck when the vehicle model moved on the bridge deck under crosswinds in a large wind tunnel. The testing system, with a total length of 18.0 m, consisted of three main parts: vehicle-bridge model system, motion system and signal measuring system. The wind speed, vehicle speed, test objects and relative position of the vehicle to the bridge deck could be easily altered for different test cases. The aerodynamic forces and moment on the moving vehicle and bridge deck were measured utilizing the new testing system. The effects of the vehicle speed, wind yaw angle, rail track position and vehicle type on the aerodynamic characteristics of the vehicle and bridge deck were investigated. In addition, a data processing method was proposed according to the characteristics of the dynamic testing signals to determine the variations of aerodynamic forces and moment on the moving vehicle and bridge deck. Three-car and single-car models were employed as the moving rail vehicle model and road vehicle model, respectively. The results indicate that the drag and lift coefficients of the vehicle tend to increase with the increase of the vehicle speed and the decrease of the resultant wind yaw angle and that the vehicle speed has more significant effect on the aerodynamic coefficients of the single-car model than on those of the three-car model. This study also reveals that the aerodynamic coefficients of the vehicle and bridge deck are strongly influenced by the rail track positions, while the aerodynamic coefficients of the bridge deck are insensitive to the vehicle speed or resultant wind yaw angle.

Scaled model tests for improvement and applicability of the transverse smoke control system on tunnels (횡류식 제·배연 시스템의 개선 및 적용성 분석을 위한 모형실험 연구)

  • Kim, Hyo-Gyu;Baek, Doo-San;Kim, Jae-Hyun;Lee, Seong-Won;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.563-574
    • /
    • 2020
  • Currently, road tunnels and railroad tunnels are building smoke control systems to emit toxic gases and smoke from fires. Among the various smoke control systems, the transverse smoke control system has the disadvantage that air supply or exhaust is performed on only half of the cross-section, rather than air supply or exhaust on the entire cross-section of the tunnel as air is supplied or exhausted by partitioning the wind path. Therefore, this study analyzed the effect of exhaustion through numerical analysis and scaled model tests on the zoning smoke control system, which improved the limitations of the transverse smoke control system. As a result of the scaled model test, the transverse ventilation system exhibited a 25.6% smoke control rate based on the state where no smoke was controled, and zoning smoke control system showed a smoke control rate of 40.8%. In addition, as a result of numerical analysis, it was found that transverse ventilation system did not control fire smoke spreading from the tunnel and continued to spread. On the other hand, zoning smoke control system was found to be smoke controled within a certain section due to the air curtain effect and the flue gas effect.

The Mechanical Behavior of Jointed Rock Masses by Using PFC2D (PFC2D를 이용한 절리암반의 역학적 물성 평가연구)

  • Park Eui-Seob;Ryu Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.119-128
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of jointed rock masses is very important for the design of tunnel and underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is the selection of the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. In this paper, a 30\;m\;\times\;30\;m\;\times\;30\;m m jointed rock mass of road tunnel site was analyzed. h discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of jointed rock masses were determined. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, getting the mechanical response of the PFC model doesn't require a user specified constitutive model.