DOI QR코드

DOI QR Code

Calculation of a Diesel Vehicle's Carbon Dioxide Emissions during Haulage Operations in an Underground Mine using GIS

GIS를 이용한 지하광산 디젤 차량의 운반작업 시 탄소배출량 산정

  • 박보영 (녹색기술센터 미래전략실) ;
  • 박세범 (부경대학교 에너지자원연구소) ;
  • 최요순 (부경대학교 환경해양대학 에너지자원공학과) ;
  • 박한수 (대성엠디아이(주) 신소재기술연구소)
  • Received : 2015.08.05
  • Accepted : 2015.08.24
  • Published : 2015.08.31

Abstract

This study presents a method to calculate carbon dioxide emissions of diesel vehicles operated in an underground mine using Geographic Information Systems (GIS). An underground limestone mine in Korea was selected as the study area. A GIS database was constructed to represent the haulage roads as a 3D vector network. The speed of dump trucks at each haulage road was investigated to determine the carbon dioxide emission factor. The amount of carbon dioxide emissions related to the truck's haulage work could be calculated by considering the carbon dioxide emission factor at each haulage road and the haulage distance determined by GIS-based optimal route analysis. Because diesel vehicles are widely utilized in the mining industry, the method proposed in this study can be used and further improved to calculate the amount of carbon dioxide emissions in mining sites.

본 연구에서는 지리정보시스템(GIS)을 이용하여 지하광산 현장에서 운영되는 디젤 차량의 탄소배출량을 정량적으로 산정할 수 있는 방법을 제시하였다. 국내 지하 석회석 광산 한 곳을 연구지역으로 선정하였고, 연구 지역의 운반도로를 3차원 벡터 네트워크 형식으로 표현하여 GIS 데이터베이스를 구축하였다. 탄소배출계수의 계산을 위해 운반도로의 각 구간별로 대형 디젤 차량인 덤프트럭의 이동속도를 측정하였다. 운반도로 각 구간별로 계산된 탄소배출계수와 GIS 기반의 최적 경로분석을 통해 결정된 트럭의 운반거리를 고려하여 운반작업과 관련한 디젤 차량의 탄소배출량을 정량적으로 산정할 수 있었다. 광업 분야에서 디젤 차량이 광범위하게 활용되고 있으므로, 본 연구에서 제시한 방법은 광산 현장의 탄소배출량 산정을 위해 사용될 수 있으며 추가적인 연구를 통해 보다 개선될 수 있을 것이다.

Keywords

References

  1. Barth, M. and K. Boriboonsomsin, 2009, Traffic congestion and greenhouse gases, The Magazine of University of California Transportation Center, No. 35, 2-9.
  2. Borjesson, P. and L. Gustavsson, 2000, Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives, Energy Policy, 28.9, 575-588. https://doi.org/10.1016/S0301-4215(00)00049-5
  3. Chong, S.M., J.H. Lee, J. Choi, J.M. Kim and K.S. Noh, 2014, Estimation of greenhouse gas emissions as highway design types by using driving simulator, International Journal of Highway Engineering, 16.6, 129-136. https://doi.org/10.7855/IJHE.2014.16.6.129
  4. Han, D.H., Y.I. Lee and H.H. Jang, 2011, A study of calculation methodology of vehicle emissions based on driver speed and acceleration behavior, Journal of Korean Society of Transportation, 29.5, 107-120.
  5. Joo, J.Y. and H.U. Oh, 2015, $CO_2$ Emission considering condition of vehicle acceleration, International Journal of Highway Engineering, 17.3, 125-132. https://doi.org/10.7855/IJHE.2015.17.3.125
  6. Kaboli, A.S. and D.G. Carmichael, 2012, Emission and cost configurations in earthmoving operations, Organization, Technology and Management in Construction, 4.1, 393-402.
  7. KEC, 2011, Expressway, http://research.ex.co.kr, 98-107 (Access at 09 September 2014).
  8. NIER, 2013, Estimate method of national air pollutants emission guideline III, http://airemiss.nier.go.kr, 131 p. (Access at 12 September 2014).
  9. NIER, 2014, Studies for improvement of air pollutants & GHGs integrated inventory system, http://www.me.go.kr, pp. 243-245. (Access at 20 June 2015).
  10. Park, B., Y. Choi and H.S. Park, 2013, Creation of vector network data with considering terrain gradient for analyzing optimal haulage routes of dump trucks in open pit mines, Tunnel and Underground Space, 23.5, 353-361. https://doi.org/10.7474/TUS.2013.23.5.353
  11. Park, B., Y. Choi and H.S. Park, 2014, Optimal routes analysis of vehicles for auxiliary operations in open-pit mines using a heuristic algorithm for the traveling salesman problem, Tunnel and Underground Space, 24.1, 11-20. https://doi.org/10.7474/TUS.2014.24.1.011
  12. Robertson, G.P., E.A. Paul and R.R. Harwood, 2000, Greenhouse gases in intensive agriculture: contributions of individual gases to radiative forcing of the atmosphere, Science, 289.5486, 1922-1925. https://doi.org/10.1126/science.289.5486.1922
  13. Ryu, J., M. Eom, S. Kwon and C. Lim, 2004, A study on the characteristics of greenhouse gas emissions exhausted from motor vehicles, Journal of The Korean Society of Automotive Engineers, Vol. 6, 22-27.
  14. Sauerbeck, D.R., 2001, $CO_2$ emissions and C sequestration by agriculture - perspectives and limitations, Nutrient Cycling in Agroecosystems, 60.1-3, 253-266. https://doi.org/10.1023/A:1012617516477
  15. Suzuki, M., T. Oka and K. Okada, 1995, The estimation of energy consumption and $CO_2$ emission due to housing construction in Japan, Energy and buildings, 22.2, 165-169. https://doi.org/10.1016/0378-7788(95)00914-J
  16. Yun, S., J. Im, J. Lee, K. Shim and K. Hwang, 2001, Climate change and coping with vulnerability of agricultural productivity, Korean Journal of Agricultural and Forest Meteorology, 3.4, 220-237.

Cited by

  1. Case study of microseismic techniques for stability analysis of pillars in a limestone mine vol.26, pp.1, 2016, https://doi.org/10.7474/TUS.2016.26.1.001
  2. Collecting Travel Time Data of Mine Equipments in an Underground Mine using Reverse RFID Systems vol.26, pp.4, 2016, https://doi.org/10.7474/TUS.2016.26.4.253
  3. BBUNS: Bluetooth Beacon-Based Underground Navigation System to Support Mine Haulage Operations vol.7, pp.12, 2017, https://doi.org/10.3390/min7110228