• Title/Summary/Keyword: Road infrastructures

Search Result 86, Processing Time 0.023 seconds

Assessment and Analysis of Maintenance Level According to Actual Prediction on the Main Infrastructures of North Korea (북한 주요 인프라 실태 예측에 의한 유지관리 수준 분석 및 평가)

  • Lee, Jeong-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.39-46
    • /
    • 2018
  • After the North-South Korean summit and PyeongChang Winter Olympics, it is recently expected that the North-South economic cooperation plan will be discussed in earnest. And it will be growing interest of the major infrastructure facilities such as roads and railways, and so on North-South Korean. Moreover, most of North Korean facilities have problems related to the safety and functionality of them such as aging, deterioration, and poor maintenance. This study asserts the necessity and importance of infrastructure maintenance in the Korean Peninsula. Therefore, Results of this study, it is appeared that very vulnerable to road, railroad, power/communication, water sewage and needed urgently for improvement. Accordingly, The purpose of this study is to investigate the current status for the whole facilities including the main infrastructure of the North Korean and to evaluate on the maintenance level of infrastructure based on face to face interview refugees of North Korean.

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

Development of Landslide-Risk Prediction Model thorough Database Construction (데이터베이스 구축을 통한 산사태 위험도 예측식 개발)

  • Lee, Seung-Woo;Kim, Gi-Hong;Yune, Chan-Young;Ryu, Han-Joong;Hong, Seong-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.23-33
    • /
    • 2012
  • Recently, landslide disasters caused by severe rain storms and typhoons have been frequently reported. Due to the geomorphologic characteristics of Korea, considerable portion of urban area and infrastructures such as road and railway have been constructed near mountains. These infrastructures may encounter the risk of landslide and debris flow. It is important to evaluate the highly risky locations of landslide and to prepare measures for the protection of landslide in the process of construction planning. In this study, a landslide-risk prediction equation is proposed based on the statistical analysis of 423 landslide data set obtained from field surveys, disaster reports on national road, and digital maps of landslide area. Each dataset includes geomorphologic characteristics, soil properties, rainfall information, forest properties and hazard history. The comparison between the result of proposed equation and actual occurrence of landslide shows 92 percent in the accuracy of classification. Since the input for the equation can be provided within short period and low cost, and the results of equation can be easily incorporated with hazard map, the proposed equation can be effectively utilized in the analysis of landslide-risk for large mountainous area.

A Research for the Determinant Factors of Safety Ratings in Road-Bridge (도로교량의 안전등급 결정요인에 관한 연구)

  • Hur, Youn-Kyoung;Lee, Hong-Il;Shin, Ju-Yeoul;Park, Cheol-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.229-237
    • /
    • 2010
  • This study analyzes the factors that affect the safety condition level of road-bridges, one of the important infrastructures. Utilizing Binary Logit model, this report empirically identifies the key factors that has influenced the recent assessed safety condition level of the first and the second major types of road-bridges, managed by public agencies, and the changes of the safety level for last six years. As a result of the analysis, the most important factor that influences the safety condition level is not the physical characteristics, but the management quality. As road-bridges are getting older and older, the management quality tends to bring about more differentials in assessing the safety condition level. The safety condition level, C or D, is likely to be improved the level, A or B, is likely to become degraded. To achieve the goal that keep the safety condition level, A and B, more than 90%, it should be considered to make the degrading rate from B to C lower. However, this study includes the limitation on data. It is essential to collect structure data that are spread out in many agencies to complement the limitation for further research.

Development of Web-based Sharing System for Inquiring Civil BIM Libraries Based on Standardized 2D Drawings (표준도 기반 BIM 라이브러리 검색지원을 위한 웹기반 공유시스템 개발)

  • Moon, Hyoun-Seok;Kim, Chang-Yoon;Cho, Guen-Ha;Ju, Ki-Beom
    • Journal of KIBIM
    • /
    • v.6 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • In BIM environments for infrastructures, civil structures such as road, bridge and tunnel etc., created into 3D objects, integrated with their properties, securing BIM design productivity is very critical during 3D modeling. To solve this issue, configuring BIM libraries so that the users can utilize prefabricating in advance 3D objects that have been applying repeatedly during BIM design is essential so much. Current BIM libraries have made focused on Ready-Made for architectural facilities. However, establishing environment for delivering BIM library for civil facilities is very sparse. Accordingly, this study developed a web-based sharing system for delivering BIM library contents based on standardized drawing for civil area. To do this, we have analyzed core features and operation system of BIM library sharing system in domestic and overseas. Besides, functional requirements that are necessary for developing BIM library sharing system was derived, and through operation scenario configuration, the web-based system was developed according to the detailed mechanism. It is expected that this system can enhance BIM design productivity during library based modeling, and can be utilized as construction supporting tools that can help construction managers to make a design change.

Development of Finance Sharing Criteria for Metropolitan BRT Infrastructure (광역BRT시설의 재원분담기준 개발)

  • Kim, Sung-Eun;Kim, Si-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.71-80
    • /
    • 2012
  • Metropolitan transport demand has increased in Seoul Metropolitan Area (SMA) due to the expansion of its role and land use. Various public transport modes have to be supplied to relieve road congestions for the convenience of users. During the constructions of theses infrastructures some conflicts between the central government and local governments arise for sharing financial resources. In this study finance sharing criteria is developed for the metropolitan BRT, transfer facility, and public garages. Finally, a case study has been done for the metropolitan BRT between Cheongra and Hwagok area in SMA.

Stabilized soil incorporating combinations of rice husk ash, pond ash and cement

  • Gupta, Deepak;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-109
    • /
    • 2017
  • The paper presents the laboratory study of clayey soil stabilized with Pond ash (PA), Rice husk ash (RHA), cement and their combination used as stabilizers to develop and evaluate the performance of clayey soil. The effect of stabilizer types and dosage on fresh and mechanical properties is evaluated through compaction tests, unconfined compressive strength tests (UCS) and Split tensile strength tests (STS) performed on raw and stabilized soil. In addition SEM (scanning electron microscopy) and XRD (X-ray diffraction) tests were carried out on certain samples in order to study the surface morphological characteristics and hydraulic compounds, which were formed. Specimens were cured for 7, 14 and 28 days after which they were tested for unconfined compression tests and split tensile strength tests. The moisture and density curves indicate that addition of RHA and pond ash results in an increase in optimum moisture content (OMC) and decrease in maximum dry density (MDD). The replacement of clay with 40% PA, 10% RHA and 4% cement increased the strength (UCS and STS) of overall mix in comparison to the mixes where PA and RHA were used individually with cement. The improvement of 336% and 303% in UCS and STS respectively has been achieved with reference to clay only. Developed stabilized soil mixtures have shown satisfactory strength and can be used for low-cost construction to build road infrastructures.

Scaling Resistance of Cement Concrete Incorporating Mineral Admixtures (광물질혼화재를 적용한 콘크리트의 스케일링 저항성 평가)

  • Lee, Seung-Tae;Park, Se-Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • PURPOSES: The scaling of a concrete surface caused by the combined effects of frost and de-icing salts is one of the main reasons for the need to repair transportation infrastructures in cold-climate regions. This study describes the results of attempts to determine the scaling resistance of concrete incorporating mineral admixtures such as fly ash, GGBFS, and silica fume, and subjected to the actions of frost and salt. METHODS : Conventionally, to evaluate the fundamental properties of concrete, flexural and compressive strength measurements are regularly performed. Based on the ASTM C 672 standard, concrete is subjected to 2%, 4%, and 8% $CaCl_2$ salt solutions along with repeated sets of 50 freeze/thaw cycles, and the scaling resistance was evaluated based on the mass of the scale and a visual examination. RESULTS : It was observed that silica fume is very effective in enhancing the scaling resistance of concrete. Meanwhile, concrete incorporating GGBFS exhibited poor resistance to scaling, especially in the first ten freeze/thaw cycles. However, fly ash concrete generally exhibited the maximum amount of damage as a result of the frost-salt attack, regardless of the concentrations of the solutions. CONCLUSIONS: It can be concluded that the scaling resistance of concrete is highly dependent on the type of the mineral admixture used in the concrete. Therefore, to provide a durable concrete pavement for use in cold-climate regions, the selection of a suitable binder is essential.

A Decision Scheme of Dynamic Task Size for Cloud Server composed of Connected Cars (연결형 자동차로 구성된 클라우드 서버를 위한 동적 작업 크기 결정 기법)

  • Min, Hong;Jung, Jinman;Kim, Taesik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2020
  • With developing vehicle and communication technologies, cars can communicate with road-side infrastructures and among other cars. As autonomous driving cars have been developed, the cars are equipped with many sensors and powerful processing units. There are many studies related to provide cloud services to users by using available resources of connected cars. In this paper, we proposed a dynamic task size decision scheme that considers communication environment between a vehicle and a base station as well as available resources while allocating a proper task to each vehicle. Simulation results based on the proposed model show that a vehicle can complete its allocated task when we considers available resources and communication environments.

Modern Urbanization Process of Ganggyeong during the Japanese Colonial Period, focused on Installation of Urban Infrastructure (일제강점기 도시기반시설의 설치를 통해 본 강경의 도시화 과정)

  • Hyun, Tae-jun;Kim, Ki-Joo;Lee, Yeon-Kyung
    • Journal of architectural history
    • /
    • v.28 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • Ganggyeong, a city which is located at riverside of Geum River, played a role to connect the inland cities and the coastal cities through the Geum river waterway. In Chosun dynasty, Ganggyeong was one of the three major markets in Korea, and at the same time, it was one of the two river docks in Korea. However, after the railway was installed in Korea, railroad was more important than waterway in transporting logistics and in 1911 Honam railroad and Ganggyeong railway station was installed. Thus it was necessary to reorganize urban structure of Ganggyeong city from the traditional river-dock city to modern railroad city. In addition, urban infrastructure to prevent flood damage was needed because Ganggyeong suffered from floods and water shortages every year. Therefore, between 1910s and 1930s large-scale social infrastructures including road, water and sewage system, river bank, floodgate was constructed not only to revitalize the declining city but also to prevent flood damage and water shortages that hinder urban development. The installation of urban infrastructure has enabled the urban expansion and development of Ganggyeong city, and it is still served as a basic urban structure.