• Title/Summary/Keyword: Road Section

Search Result 636, Processing Time 0.026 seconds

A Study on the Aerodynamic Stability of Long Span Pedestrian Bridges (장경간 보도교의 내풍안정성에 관한 연구)

  • Lee, Seungho;Jeong, Houigab;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.287-296
    • /
    • 2019
  • In recent years, a number of long span cable-stayed pedestrian bridges have been constructed to the advantages of relatively low cost construction and the many tourists visiting. However, most of the pedestrian bridges are located in parks or sightseeing areas, so they are conducted without proper review and design process. It is necessary to review the aerodynamic stability of the long span cable-stayed pedestrian bridge, and it should be designed in detail from various points of view rather than the road bridge. In this study, we investigated the wind characteristics of the cable-stayed pedestrian bridge, and the empirical equations for the relationship between the main span length and the fundamental natural frequencies are presented for future use. In addition, the flutter wind speed limit of the flat plate deck pedestrian bridge calculated using the Selberg's equation is also presented. The final aerodynamic bridge section which satisfied the aerodynamic stability was found from open grating method. The proposed method can be used for long span cable-stayed pedestrian bridge in the future.

A Study on Vehicle Big Data-based Micro-scale Segment Speed Information Service for Future Traffic Environment Assistance (미래 교통환경 지원을 위한 차량 빅데이터 기반의 미시구간 속도정보 서비스 방안 연구)

  • Choi, Kanghyeok;Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.74-84
    • /
    • 2022
  • Vehicle average speed information which measured at a point or a short section has a problem in that it cannot accurately provide the speed changes on an actual highway. In this study, segment separation method based on vehicle big data for accurate micro-speed estimation is proposed. In this study, to find the point where the speed deviation occurs using location-based individual vehicle big data, time and space mean speed functions were used. Next, points being changed micro-scale speed are classified through gradual segment separation based on geohash. By the comparative evaluation for the results, this study presents that the link-based speed is could not represent accurate speed for micro-scale segments.

The Characteristics of Long-term Deformation Behavior During Tunnel Excavation in the Pyroclastic Rock (화산쇄설암 구간에서 터널 공사 중 장기변형거동 특성 연구)

  • Jang, Sukmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.23-28
    • /
    • 2022
  • In Korea, 70% of the land is mountainous and structures occupy a high proportion in railway and road construction. In particular, in recent years, the construction of high-speed railways and highways for high-speed driving is rapidly increasing. At the same time, the construction of tunnels is also increasing. The number of tunnel construction cases in which long-term deformation occurs after tunnel excavation is completed is increasing. The stability of these tunnel structures depends entirely on the characteristics of the rock surrounding the tunnel excavation. In the case of pyroclastic rock, which is the subject of this study, it is generally vulnerable to weathering and has a characteristic that its strength decreases over a long period of time. Tunnel design and construction planning considering the strength characteristics of pyroclastic rocks are essential. This study analyzed the cases of over-deformation that occurred at the tunnel site in the pyroclastic section. Based on this study, a plan for tunnel design and construction management in an area where pyroclastic rock exist in the future is presented.

Implementation of an Autonomous Driving System for the Segye AI Robot Car Race Competition (세계 AI 로봇 카레이스 대회를 위한 자율 주행 시스템 구현)

  • Choi, Jung Hyun;Lim, Ye Eun;Park, Jong Hoon;Jeong, Hyeon Soo;Byun, Seung Jae;Sagong, Ui Hun;Park, Jeong Hyun;Kim, Chang Hyun;Lee, Jae Chan;Kim, Do Hyeong;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.198-208
    • /
    • 2022
  • In this paper, an autonomous driving system is implemented for the Segye AI Robot Race Competition that multiple vehicles drive simultaneously. By utilizing the ERP42-racing platform, RTK-GPS, and LiDAR sensors provided in the competition, we propose an autonomous driving system that can drive safely and quickly in a road environment with multiple vehicles. This system consists of a recognition, judgement, and control parts. In the recognition stage, vehicle localization and obstacle detection through waypoint-based LiDAR ROI were performed. In the judgement stage, target velocity setting and obstacle avoidance judgement are determined in consideration of the straight/curved section and the distance between the vehicle and the neighboring vehicle. In the control stage, adaptive cruise longitudinal velocity control based on safe distance and lateral velocity control based on pure-pursuit are performed. To overcome the limited experimental environment, simulation and partial actual experiments were conducted together to develop and verify the proposed algorithms. After that, we participated in the Segye AI Robot Race Competition and performed autonomous driving racing with verified algorithms.

Assessment of Wavelet Technique Applied to Incident Detection - Case of Seoul Urban Freeway (Naebusunhwallo) - (돌발상황 검지를 위한 Wavelet 기법의 적용성 평가 - 서울특별시 도시고속도로를 중심으로 -)

  • Kim, Dong Sun;Baek, Joo Hyun;Song, Ki Han;Rhee, Sung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.581-586
    • /
    • 2006
  • Incidents, which is unexpected unusual events such as traffic accidents, have increased on the most roads in Korea. The obstruction of a fluent traffic flow occurred by incidents causes the traffic congestion and decreases the capacity. The Wavelet technique was applied to detect the road section and the happening time of incidents on urban freeways in this study, and this technique has been widely used in many engineering fields such as an electrical engineering, etc. The availability and validity of the Wavelet technique to the detection of incidents was examined by the occupancy rate, the important element of traffic flows, which is extracted from the data of detectors installed on Seoul Urban freeways. Then, this result is compared to the California Algorithm and the Low-Pass Filtering Algorithm among basic present detection algorithms, which are based on the occupancy rate. As a result, the false alarm rate of this method was similar as that of the California algorithm and the Low-Pass Filtering algorithm, but the detection rate is higher.

A Big Data Analysis on the Enactment Process of Min-Sik's Law (빅데이터 분석을 활용한 민식이법 제정과정에 대한 연구)

  • Kang, Aera;Nam, Taewoo
    • Informatization Policy
    • /
    • v.30 no.4
    • /
    • pp.89-112
    • /
    • 2023
  • Traffic safety policies have been established and carried out every five years according to the Traffic Safety Act. In addition to policies that are planned and carried out in the long run, there are also policies established to prevent the recurrence of various social issues and accidents. Citizens' participation in administrative affairs has recently seized the spotlight, and has become an efficient means of realizing administrative democracy. Based on big data analysis, this study aims to present how the "Kim Min-sik Case," which recently brought to the fore a social issue of strengthening laws on child school zones, has realized administrative democracy and contributed to legislation due to the emergence of the online platform called "national petition." Policy changes according to the cycle of issues are divided according to time series classification and what contents are devised in each section through text mining analysis. In this regard, the results of this study are expected to provide useful theoretical and practical implications for researchers and policymakers by presenting policy implications that it is important to prepare practical and realistic alternatives in solving policy problems.

Developing girder distribution factors in bridge analysis through B-WIM measurements: An empirical study

  • Widi Nugraha;Winarputro Adi Riyono;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.207-220
    • /
    • 2023
  • The safety of bridges are critical in our transportation infrastructure. Bridge design and analysis require complex structural analysis procedures to ensure their safety and stability. One common method is to calculate the maximum moment in the girders to determine the appropriate bridge section. Girder distribution factors (GDFs) provide a simpler approach for performing this analysis. A GDF is a ratio between the response of a single girder and the total response of all girders in the bridge. This paper explores the significance of GDFs in bridge analysis and design, including their importance in the evaluation of existing bridges. We utilized Bridge Weigh-in-motion (B-WIM) measurements of five simple supported girder bridge in Indonesia to develop a simple GDF provisions for the Indonesia's bridge design code. The B-WIM measurements enable us to know each girder strain as a response due to vehicle loading as the vehicle passes the bridge. The calculated GDF obtained from the B-WIM measurements were compared with the code-specified GDF and the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge design specification. Our study found that the code specified GDF was adequate or conservative compared to the GDF obtained from the B-WIM measurements. The proposed GDF equation correlates well with the AASHTO LRFD bridge design specification. Developing appropriate provisions for GDFs in Indonesian bridge design codes can provides a practical solution for designing girder bridges in Indonesia, ensuring safety while allowing for easier calculations and assessments based on B-WIM measurements.

A Study on the Stability of the Slope according to the Bedding of the Sedimentary Rocks (퇴적암지대의 층리 경사에 따른 비탈면 안정성 검토)

  • Seonggi Yu;Chanmook Chung;Dongwon Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.193-206
    • /
    • 2024
  • A standard slope stability analysis was undertaken for new railway sections, based on the slope of sedimentary rock layers and filling material (sand), to evaluate the stability of the cut-off slope in the section passing through a zone of sedimentary rock. The stability analysis was undertaken during the dry and rainy seasons, accounting for earthquake occurrence, based on slope design criteria. It was found that if the slope of the sedimentary rock formation was <10°, the effect on the safety rate of the cut-off slope was insignificant. Furthermore, a slope relief of 1:1.0 or more should be applied with slopes of 10~20°, and 1:1.2 or more with >20°. This study provides an important reference for evaluation of slope stability when railway and road construction is undertaken in areas of sedimentary rock.

The Related Research with the Land Cover State and Temperature in the Outer Space of the Super-High-Rise Building (초고층 건축물 외부공간의 토지 피복 상태와 온도와의 관계 연구)

  • Han, Bong-Ho;Kim, Hong-Soon;Jung, Tae-Jun;Hong, Suk-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.751-762
    • /
    • 2010
  • In order to understand the influence that the plant cover condition of the high-rise building outer space causes to the temperature change, we selected 12 high-rise building constructed in Seoul City. The land cover type of the outside was classified into six type(outer road, paved surface, shrub/grassland, single-layer tree planting-site, multi-layer planting-site, and waterscape facilities) and the temperature was measured at the representative point for each type in order to analyze the land cover temperature differential for each type of the high-rise building outer space. The study area showing the temperature tendency to be similar based upon one way analysis of variance after selecting the central part of the outer road for a control and measuring a temperature in order to consider the neighboring environmental difference of the dozen building was classified into 4 groups. As to the one-way layout result of variance analysis with the land cover type of the classified group and outer space temperature, the single-layer tree planting-site, waterscape facilities, and multi-layer planting-site belonged mainly to the low temperature section. The shrub/grassland, paved surface, and outer road belonged to the high temperature region. The temperature difference between low temperature region and high temperature region is about $1.06{\sim}6.17^{\circ}C$. However, the temperature in the Outer Space of the Super-High-Rise Building was variously appeared by the influence such as the cramped of the created planting-site and waterscape facilities area, the increase of amount of solar radiation and the reduction of reflection amount of light due to building etc.. Thus, the composition all produced the area of the green quantity required for each space and water space in advance. It was determined that there were the minimum area displaying an effect and the necessity to it secures the green quantity.

Structural Behavior of the Buried flexible Conduits in Coastal Roads Under the Live Load (활하중이 작용하는 해안도로 하부 연성지중구조물의 거동 분석)

  • Cho, Sung-Min;Chang, Yong-Chai
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.323-328
    • /
    • 2002
  • Soil-steel structures have been used for the underpass, or drainage systems in the road embankment. This type of structures sustain external load using the correlations with the steel wall and engineered backfill materials. Buried flexible conduits made of corrugated steel plates for the coastal road was tested under vehicle loading to investigate the effects of live load. Testing conduits was a circular structure with a diameter of 6.25m. Live-load tests were conducted on two sections, one of which an attempt was made to reinforce the soil cover with the two layers of geo-gird. Hoop fiber strains of corrugated plate, normal earth pressures exerted outside the structure, and deformations of structure were instrumented during the tests. This paper describes the measured static and dynamic load responses of structure. Wall thrust by vehicle loads increased mainly at the crown and shoulder part of the conduit. However additional bending moment by vehicle loads was neglectable. The effectiveness of geogrid-reinforced soil cover on reducing hoop thrust is also discussed based on the measurements in two sections of the structure. The maximum thrusts at the section with geogrid-reinforced soil cover was 85-92% of those with un-reinforced soil cover in the static load tests of the circular structure; this confirms the beneficial effect of soil cover reinforcement on reducing the hoop thrust. However, it was revealed that the two layers of geogrid had no effect on reducing the overburden pressure at the crown level of structure. The obtained values of DLA decrease approximately in proportion to the increase in soil cover from 0.9m to 1.5m. These values are about 1.2-1.4 times higher than those specified in CHBDC.