• 제목/요약/키워드: Road Noise Extraction

검색결과 16건 처리시간 0.019초

청음용 자동차 로드노이즈 추출 방법 연구 (A Study on Road Noise Extraction Methods for Listening)

  • 국형석;김형건;조문환;이강덕
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.844-850
    • /
    • 2016
  • This study pertains to the extraction of the road noise component of signals from a vehicle's interior noise via the traditional frequency domain and time domain system identification methods. For road noise extraction based on the frequency domain system identification method, the appropriate matrix inversion strategy is investigated and causal and non-causal impulse response filters are compared. Furthermore, appropriate data lengths for the frequency domain system identification method are investigated. In addition to the traditional road noise extraction methods based on frequency domain system identification, a new approach to extract road noise via the time domain system identification method based on a parametric input-output model is proposed and investigated in the present study. In this approach, instead of constructing a higher order model for the full-band road noise, input and output signals are processed in the subband domain and lower order parametric models optimal to each subband are determined. These parametric models are used to extract road noises in each subband; the full band road noise is then reconstructed from the subband road noises. This study shows that both the methods in the frequency domain and the time domain successfully extract the road noise from the vehicle's interior noise.

HSI 색정보와 관심영역(ROI-LB)을 이용한 차선검출 알고리듬 (A Road Lane Detection Algorithm using HSI Color Information and ROI-LB)

  • 최인석;정차근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.222-224
    • /
    • 2009
  • This paper presents an algorithm that extracts road lane's specific information by using HSI color information and performance enhancement of lane detection base on vision processing of drive assist. As a preprocessing for high speed lane detection, the optimal extraction of region of interest for lane boundary(ROI-LB) can be processed to reduction of detection region in which high speed processing is enabled and it also increases reliabilities by deleting edges those are misrecognized. Road lane is extracted with simultaneous processing of noise reduction and edge enhancement using the Laplacian filter, the reliability of feature extraction can be increased for various road lane patterns. Since noise can be removed by using saturation and brightness of HSI color model. Also it searches for the road lane's color information and extracts characteristics. The real road experimental results are presented to evaluate the effectiveness of the proposed method.

  • PDF

위성영상에서 도로 추출을 위한 히스토그램 기반 경계선 추출자 (Histogram-based road border line extractor for road extraction from satellite imagery)

  • 이동훈;김종화;최흥문
    • 대한전자공학회논문지SP
    • /
    • 제44권5호
    • /
    • pp.28-34
    • /
    • 2007
  • 위성 영상에서 도로를 효과적으로 추출하기 위한 히스토그램 기반 도로 경계선 추출자를 제안하였다. 제안한 추출자를 이용해 도로 경계선 양측의 도로와 비도로 영역 각 화소의 방향성 히스토그램 차를 계산하고, 그 에지 강도 맵을 구하여 도로의 경계선을 추출하였다. 그리고 원영상과 분할된 도로 군집 영상의 에지 강도 맵을 계층적으로 구하여 직선 도로와 곡선 도로를 추출한 다음, 도로의 연결성을 기반으로 하여 전체 도로망을 구성하였다. 제안한 추출자는 칼라 유사도를 계산하는 기존 방법과 달리 히스토그램 차를 기반으로 하기 때문에 잡영에 강건하게 도로를 추출할 수 있으며, 도로 경계선의 위치와 도로 폭도 함께 추출할 수 있을 뿐만 아니라 도로군집을 자동식별하기 때문에 다양한 분광특성의 도로들도 쉽게 추출할 수 있다. 제안한 추출자를 이용하여 1m의 공간 해상도를 갖는 IKONOS 위성 영상에 대해 실험하여 잡영에 강건하게 도로가 추출됨을 확인하였고, 직선 도로 뿐만 아니라 곡선도로 추출도 용이함을 확인하였다.

영상처리 기술을 이용한 도로 및 차량 추출 기법에 관한 연구 (A Study on the Extraction of Road & Vehicles Using Image Processing Technique)

  • 가칠오;변영기;유기윤;김용일
    • 대한공간정보학회지
    • /
    • 제13권4호
    • /
    • pp.3-9
    • /
    • 2005
  • 최근 영상 처리를 이용한 교통 정보 추출은 기존의 물리적인 장비들에 비하여 상대적으로 간단한 설치와 적은 비용으로 다양한 정보를 추출하는 장점으로 인하여 널리 연구되고 있다. 이러한 영상을 기반으로 하는 교통정보 추출 알고리즘들은 영상에서 관심 정보인 차량을 정확히 추출하는데서 시작된다. 교통 정보를 추출하는 전단계로서 영상 내에서 움직이는 차량을 검출하기 위해 많이 사용되는 배경빼기(background subtraction) 연산 후 영상 이진화 과정에서 상당한 양의 노이즈가 발생하며, 이는 교통정보의 정확도에 영향을 미친다. 이러한 노이즈는 모든 교통정보가 도로를 주행하고 있는 차량들로부터 추출됨에도 불구하고 실제 영상에서는 비도로영역의 가로수나 행인이 차량과 함께 움직임으로 검출되기 때문에 발생한다. 이를 위해 본 연구에서는 차선정보를 이용하여 도로영역을 추출함으로써 노이즈의 상당부분을 제거할 수 있었으며, 연산의 속도도 높일 수 있었다. 또한, 연속된 영상간의 비(ratio)를 이용하여 차량으로 인한 그림자의 효과를 최소화하였다.

  • PDF

평균이동분할과 연결요소를 이용한 도로추출 알고리즘 (A Road Extraction Algorithm using Mean-Shift Segmentation and Connected-Component)

  • 이태희;황보현;윤종호;박병수;최명렬
    • 디지털융복합연구
    • /
    • 제12권1호
    • /
    • pp.359-364
    • /
    • 2014
  • 본 논문은 평균이동방법과 연결요소방법을 이용하여 도로 영역을 추출하는 알고리즘을 제안하였다. 평균 이동 방법은 중심 모드를 찾기 위한 비모수적 통계 방법으로 컬러 영상을 분할하는데 효율적이다. 일반적으로, 영상의 중 하단에 위치하는 정보를 활용하여 도로의 특징점이 추출된다. 이 특징점과 분할된 컬러 영상을 이용하면, 도로의 영역을 추출할 수 있다. 그러나, 도로의 위치정보와 색상정보만으로 도로영역을 추출할 경우, 잡음과 도로 이외의 영역까지 추출되는 단점이 있다. 본 논문에서는 모폴로지 열기 닫기 연산을 이용하여 잡음을 제거하고, 연결요소 방법을 통하여 가장 큰 영역의 부분만을 추출하여 도로 영역으로 결정하는 방법을 제안한다. 제안된 방법은 실험을 통하여 잡음 제거와 보다 정확한 도로 검출됨을 검증한다.

칼라 지도 영상에서 도로 정보 추출 (Extraction of Road from Color Map Image)

  • 안창;최원혁;이상범
    • 한국정보처리학회논문지
    • /
    • 제4권3호
    • /
    • pp.871-879
    • /
    • 1997
  • 지리 정보 시스템의 구축을 위한 기존의 수치 지도화 방법은 많은 비용과 시간이 소요되는 작업이므로 자동입력을 위한 도구의 필요성이 절실하다 지도의 특징을 살펴 보면, 몇 가지 특징적인 색을 이용하여 정보를 계층화시켜 작성되어 있으므로, 영상에서 색 정보를 분리하면, 여러 가지 정보를 효율적으로 추출할 수 있다. 본 논문에서는 칼라 지도 영상에서 도로 정보를 추출하는 알고리즘을 제안하였다. 스캐너로 입력된 칼라 지도영상을 색 계층별로 분리하고, 도로를 포함하고 있는 영상에서 모폴로지 연산의 하나인 조건적 볼림 연산을 병렬적으로 적용하는 알고리즘을 제안하였다. 제안된 복원 알고리즘을 이용하여 정보의 중첩으로 인한 도로의 훼손된 부분을 효율적으로 복원하였으며, 세선화와 벡터화를 통하여 도로의 정보를 표현하였다.

  • PDF

EXTRACTION OF LANE-RELATED INFORMATION AND A REAL-TIME IMAGE PROCESSING ONBOARD SYSTEM

  • YI U. K.;LEE W.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.171-181
    • /
    • 2005
  • The purpose of this paper is two-fold: 1) A novel algorithm in order to extract lane-related information from road images is presented; 2) Design specifications of an image processing onboard unit capable of extracting lane­related information in real-time is also presented. Obtaining precise information from road images requires many features due to the effects of noise that eventually leads to long processing time. By exploiting a FPGA and DSP, we solve the problem of real-time processing. Due to the fact that image processing of road images relies largely on edge features, the FPGA is adopted in the hardware design. The schematic configuration of the FPGA is optimized in order to perform 3 $\times$ 3 Sobel edge extraction. The DSP carries out high-level image processing of recognition, decision, estimation, etc. The proposed algorithm uses edge features to define an Edge Distribution Function (EDF), which is a histogram of edge magnitude with respect to the edge orientation angle. The EDF enables the edge-related information and lane-related to be connected. The performance of the proposed system is verified through the extraction of lane-related information. The experimental results show the robustness of the proposed algorithm and a processing speed of more than 25 frames per second, which is considered quite successful.

Extraction of quasi-static component from vehicle-induced dynamic response using improved variational mode decomposition

  • Zhiwei Chen;Long Zhao;Yigui Zhou;Wen-Yu He;Wei-Xin Ren
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.155-169
    • /
    • 2023
  • The quasi-static component of the moving vehicle-induced dynamic response is promising in damage detection as it is sensitive to bridge damage but insensitive to environmental changes. However, accurate extraction of quasi-static component from the dynamic response is challenging especially when the vehicle velocity is high. This paper proposes an adaptive quasi-static component extraction method based on the modified variational mode decomposition (VMD) algorithm. Firstly the analytical solutions of the frequency components caused by road surface roughness, high-frequency dynamic components controlled by bridge natural frequency and quasi-static components in the vehicle-induced bridge response are derived. Then a modified VMD algorithm based on particle swarm algorithm (PSO) and mutual information entropy (MIE) criterion is proposed to adaptively extract the quasi-static components from the vehicle-induced bridge dynamic response. Numerical simulations and real bridge tests are conducted to demonstrate the feasibility of the proposed extraction method. The results indicate that the improved VMD algorithm could extract the quasi-static component of the vehicle-induced bridge dynamic response with high accuracy in the presence of the road surface roughness and measurement noise.

고립 연결-성분의 방향성 인지에 의한 도로 영역 추출 (Road Extraction by the Orientation Perception of the Isolated Connected-Components)

  • 이우범
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.75-81
    • /
    • 2012
  • 고해상도 위성영상에 내재된 도로 영역의 추출에 있어서 이진화, 잡음 제거, 색처리 등의 전처리 작업에 의해서 추출된 도로 후보 영역에 대한 도로 영역 식별 작업은 가장 중요한 과정이다. 따라서 본 논문에서는 전처리 작업에 의해서 추출된 도로 후보 영역에 대해서 대뇌 시각영역에서 발견되는 신경 세포(Neuron cell)의 방향-선택적 인지 기능을 계산 모델화한 공간필터(Orientation-selective spatial filter)를 적용하여 도로 영역을 식별하는 새로운 방법을 제안한다. 제안하는 방법은 전처리 결과 고립된 연결 성분으로 라벨링 된 각각의 도로후보 영역에 대해서 신경 세포형 방향 필터를 적용한 후, 강한 방향 성분이 인지된 영역을 도로 영역으로 식별한다. 제안한 방법의 성능 평가를 위해서는 위성영상으로부터 추출된 도로 후보 영역에 대해서 도로, 비도로 부류의 혼동 행렬(Confusion matrix)을 이용한 식별 정확 및 오류율을 측정하여 보인다. 실험 결과, 본 논문에서 제안한 방향 선택적 필터 기반의 방법은 추출된 도로 후보 영역에 대해서 92% 이상의 도로 식별 정확성을 보였다.

A FUZZY NEURAL NETWORK-BASED DECISION OF ROAD IMAGE QUALITY FOR THE EXTRACTION OF LANE-RELATED INFORMATION

  • YI U. K.;LEE J. W.;BAEK K. R.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.53-63
    • /
    • 2005
  • We propose a fuzzy neural network (FNN) theory capable of deciding the quality of a road image prior to extracting lane-related information. The accuracy of lane-related information obtained by image processing depends on the quality of the raw images, which can be classified as good or bad according to how visible the lane marks on the images are. Enhancing the accuracy of the information by an image-processing algorithm is limited due to noise corruption which makes image processing difficult. The FNN, on the other hand, decides whether road images are good or bad with respect to the degree of noise corruption. A cumulative distribution function (CDF), a function of edge histogram, is utilized to extract input parameters from the FNN according to the fact that the shape of the CDF is deeply correlated to the road image quality. A suitability analysis shows that this deep correlation exists between the parameters and the image quality. The input pattern vector of the FNN consists of nine parameters in which eight parameters are from the CDF and one is from the intensity distribution of raw images. Experimental results showed that the proposed FNN system was quite successful. We carried out simulations with real images taken in various lighting and weather conditions, and obtained successful decision-making about $99\%$ of the time.