This study pertains to the extraction of the road noise component of signals from a vehicle's interior noise via the traditional frequency domain and time domain system identification methods. For road noise extraction based on the frequency domain system identification method, the appropriate matrix inversion strategy is investigated and causal and non-causal impulse response filters are compared. Furthermore, appropriate data lengths for the frequency domain system identification method are investigated. In addition to the traditional road noise extraction methods based on frequency domain system identification, a new approach to extract road noise via the time domain system identification method based on a parametric input-output model is proposed and investigated in the present study. In this approach, instead of constructing a higher order model for the full-band road noise, input and output signals are processed in the subband domain and lower order parametric models optimal to each subband are determined. These parametric models are used to extract road noises in each subband; the full band road noise is then reconstructed from the subband road noises. This study shows that both the methods in the frequency domain and the time domain successfully extract the road noise from the vehicle's interior noise.
This paper presents an algorithm that extracts road lane's specific information by using HSI color information and performance enhancement of lane detection base on vision processing of drive assist. As a preprocessing for high speed lane detection, the optimal extraction of region of interest for lane boundary(ROI-LB) can be processed to reduction of detection region in which high speed processing is enabled and it also increases reliabilities by deleting edges those are misrecognized. Road lane is extracted with simultaneous processing of noise reduction and edge enhancement using the Laplacian filter, the reliability of feature extraction can be increased for various road lane patterns. Since noise can be removed by using saturation and brightness of HSI color model. Also it searches for the road lane's color information and extracts characteristics. The real road experimental results are presented to evaluate the effectiveness of the proposed method.
위성 영상에서 도로를 효과적으로 추출하기 위한 히스토그램 기반 도로 경계선 추출자를 제안하였다. 제안한 추출자를 이용해 도로 경계선 양측의 도로와 비도로 영역 각 화소의 방향성 히스토그램 차를 계산하고, 그 에지 강도 맵을 구하여 도로의 경계선을 추출하였다. 그리고 원영상과 분할된 도로 군집 영상의 에지 강도 맵을 계층적으로 구하여 직선 도로와 곡선 도로를 추출한 다음, 도로의 연결성을 기반으로 하여 전체 도로망을 구성하였다. 제안한 추출자는 칼라 유사도를 계산하는 기존 방법과 달리 히스토그램 차를 기반으로 하기 때문에 잡영에 강건하게 도로를 추출할 수 있으며, 도로 경계선의 위치와 도로 폭도 함께 추출할 수 있을 뿐만 아니라 도로군집을 자동식별하기 때문에 다양한 분광특성의 도로들도 쉽게 추출할 수 있다. 제안한 추출자를 이용하여 1m의 공간 해상도를 갖는 IKONOS 위성 영상에 대해 실험하여 잡영에 강건하게 도로가 추출됨을 확인하였고, 직선 도로 뿐만 아니라 곡선도로 추출도 용이함을 확인하였다.
최근 영상 처리를 이용한 교통 정보 추출은 기존의 물리적인 장비들에 비하여 상대적으로 간단한 설치와 적은 비용으로 다양한 정보를 추출하는 장점으로 인하여 널리 연구되고 있다. 이러한 영상을 기반으로 하는 교통정보 추출 알고리즘들은 영상에서 관심 정보인 차량을 정확히 추출하는데서 시작된다. 교통 정보를 추출하는 전단계로서 영상 내에서 움직이는 차량을 검출하기 위해 많이 사용되는 배경빼기(background subtraction) 연산 후 영상 이진화 과정에서 상당한 양의 노이즈가 발생하며, 이는 교통정보의 정확도에 영향을 미친다. 이러한 노이즈는 모든 교통정보가 도로를 주행하고 있는 차량들로부터 추출됨에도 불구하고 실제 영상에서는 비도로영역의 가로수나 행인이 차량과 함께 움직임으로 검출되기 때문에 발생한다. 이를 위해 본 연구에서는 차선정보를 이용하여 도로영역을 추출함으로써 노이즈의 상당부분을 제거할 수 있었으며, 연산의 속도도 높일 수 있었다. 또한, 연속된 영상간의 비(ratio)를 이용하여 차량으로 인한 그림자의 효과를 최소화하였다.
본 논문은 평균이동방법과 연결요소방법을 이용하여 도로 영역을 추출하는 알고리즘을 제안하였다. 평균 이동 방법은 중심 모드를 찾기 위한 비모수적 통계 방법으로 컬러 영상을 분할하는데 효율적이다. 일반적으로, 영상의 중 하단에 위치하는 정보를 활용하여 도로의 특징점이 추출된다. 이 특징점과 분할된 컬러 영상을 이용하면, 도로의 영역을 추출할 수 있다. 그러나, 도로의 위치정보와 색상정보만으로 도로영역을 추출할 경우, 잡음과 도로 이외의 영역까지 추출되는 단점이 있다. 본 논문에서는 모폴로지 열기 닫기 연산을 이용하여 잡음을 제거하고, 연결요소 방법을 통하여 가장 큰 영역의 부분만을 추출하여 도로 영역으로 결정하는 방법을 제안한다. 제안된 방법은 실험을 통하여 잡음 제거와 보다 정확한 도로 검출됨을 검증한다.
지리 정보 시스템의 구축을 위한 기존의 수치 지도화 방법은 많은 비용과 시간이 소요되는 작업이므로 자동입력을 위한 도구의 필요성이 절실하다 지도의 특징을 살펴 보면, 몇 가지 특징적인 색을 이용하여 정보를 계층화시켜 작성되어 있으므로, 영상에서 색 정보를 분리하면, 여러 가지 정보를 효율적으로 추출할 수 있다. 본 논문에서는 칼라 지도 영상에서 도로 정보를 추출하는 알고리즘을 제안하였다. 스캐너로 입력된 칼라 지도영상을 색 계층별로 분리하고, 도로를 포함하고 있는 영상에서 모폴로지 연산의 하나인 조건적 볼림 연산을 병렬적으로 적용하는 알고리즘을 제안하였다. 제안된 복원 알고리즘을 이용하여 정보의 중첩으로 인한 도로의 훼손된 부분을 효율적으로 복원하였으며, 세선화와 벡터화를 통하여 도로의 정보를 표현하였다.
The purpose of this paper is two-fold: 1) A novel algorithm in order to extract lane-related information from road images is presented; 2) Design specifications of an image processing onboard unit capable of extracting lanerelated information in real-time is also presented. Obtaining precise information from road images requires many features due to the effects of noise that eventually leads to long processing time. By exploiting a FPGA and DSP, we solve the problem of real-time processing. Due to the fact that image processing of road images relies largely on edge features, the FPGA is adopted in the hardware design. The schematic configuration of the FPGA is optimized in order to perform 3 $\times$ 3 Sobel edge extraction. The DSP carries out high-level image processing of recognition, decision, estimation, etc. The proposed algorithm uses edge features to define an Edge Distribution Function (EDF), which is a histogram of edge magnitude with respect to the edge orientation angle. The EDF enables the edge-related information and lane-related to be connected. The performance of the proposed system is verified through the extraction of lane-related information. The experimental results show the robustness of the proposed algorithm and a processing speed of more than 25 frames per second, which is considered quite successful.
The quasi-static component of the moving vehicle-induced dynamic response is promising in damage detection as it is sensitive to bridge damage but insensitive to environmental changes. However, accurate extraction of quasi-static component from the dynamic response is challenging especially when the vehicle velocity is high. This paper proposes an adaptive quasi-static component extraction method based on the modified variational mode decomposition (VMD) algorithm. Firstly the analytical solutions of the frequency components caused by road surface roughness, high-frequency dynamic components controlled by bridge natural frequency and quasi-static components in the vehicle-induced bridge response are derived. Then a modified VMD algorithm based on particle swarm algorithm (PSO) and mutual information entropy (MIE) criterion is proposed to adaptively extract the quasi-static components from the vehicle-induced bridge dynamic response. Numerical simulations and real bridge tests are conducted to demonstrate the feasibility of the proposed extraction method. The results indicate that the improved VMD algorithm could extract the quasi-static component of the vehicle-induced bridge dynamic response with high accuracy in the presence of the road surface roughness and measurement noise.
고해상도 위성영상에 내재된 도로 영역의 추출에 있어서 이진화, 잡음 제거, 색처리 등의 전처리 작업에 의해서 추출된 도로 후보 영역에 대한 도로 영역 식별 작업은 가장 중요한 과정이다. 따라서 본 논문에서는 전처리 작업에 의해서 추출된 도로 후보 영역에 대해서 대뇌 시각영역에서 발견되는 신경 세포(Neuron cell)의 방향-선택적 인지 기능을 계산 모델화한 공간필터(Orientation-selective spatial filter)를 적용하여 도로 영역을 식별하는 새로운 방법을 제안한다. 제안하는 방법은 전처리 결과 고립된 연결 성분으로 라벨링 된 각각의 도로후보 영역에 대해서 신경 세포형 방향 필터를 적용한 후, 강한 방향 성분이 인지된 영역을 도로 영역으로 식별한다. 제안한 방법의 성능 평가를 위해서는 위성영상으로부터 추출된 도로 후보 영역에 대해서 도로, 비도로 부류의 혼동 행렬(Confusion matrix)을 이용한 식별 정확 및 오류율을 측정하여 보인다. 실험 결과, 본 논문에서 제안한 방향 선택적 필터 기반의 방법은 추출된 도로 후보 영역에 대해서 92% 이상의 도로 식별 정확성을 보였다.
We propose a fuzzy neural network (FNN) theory capable of deciding the quality of a road image prior to extracting lane-related information. The accuracy of lane-related information obtained by image processing depends on the quality of the raw images, which can be classified as good or bad according to how visible the lane marks on the images are. Enhancing the accuracy of the information by an image-processing algorithm is limited due to noise corruption which makes image processing difficult. The FNN, on the other hand, decides whether road images are good or bad with respect to the degree of noise corruption. A cumulative distribution function (CDF), a function of edge histogram, is utilized to extract input parameters from the FNN according to the fact that the shape of the CDF is deeply correlated to the road image quality. A suitability analysis shows that this deep correlation exists between the parameters and the image quality. The input pattern vector of the FNN consists of nine parameters in which eight parameters are from the CDF and one is from the intensity distribution of raw images. Experimental results showed that the proposed FNN system was quite successful. We carried out simulations with real images taken in various lighting and weather conditions, and obtained successful decision-making about $99\%$ of the time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.