• Title/Summary/Keyword: Road Noise Extraction

Search Result 16, Processing Time 0.018 seconds

A Study on Road Noise Extraction Methods for Listening (청음용 자동차 로드노이즈 추출 방법 연구)

  • Kook, Hyung-Seok;Kim, Hyoung-Gun;Cho, Munhwan;Ih, Kang-Duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.844-850
    • /
    • 2016
  • This study pertains to the extraction of the road noise component of signals from a vehicle's interior noise via the traditional frequency domain and time domain system identification methods. For road noise extraction based on the frequency domain system identification method, the appropriate matrix inversion strategy is investigated and causal and non-causal impulse response filters are compared. Furthermore, appropriate data lengths for the frequency domain system identification method are investigated. In addition to the traditional road noise extraction methods based on frequency domain system identification, a new approach to extract road noise via the time domain system identification method based on a parametric input-output model is proposed and investigated in the present study. In this approach, instead of constructing a higher order model for the full-band road noise, input and output signals are processed in the subband domain and lower order parametric models optimal to each subband are determined. These parametric models are used to extract road noises in each subband; the full band road noise is then reconstructed from the subband road noises. This study shows that both the methods in the frequency domain and the time domain successfully extract the road noise from the vehicle's interior noise.

A Road Lane Detection Algorithm using HSI Color Information and ROI-LB (HSI 색정보와 관심영역(ROI-LB)을 이용한 차선검출 알고리듬)

  • Choi, In-Suk;Cheong, Cha-Keon
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.222-224
    • /
    • 2009
  • This paper presents an algorithm that extracts road lane's specific information by using HSI color information and performance enhancement of lane detection base on vision processing of drive assist. As a preprocessing for high speed lane detection, the optimal extraction of region of interest for lane boundary(ROI-LB) can be processed to reduction of detection region in which high speed processing is enabled and it also increases reliabilities by deleting edges those are misrecognized. Road lane is extracted with simultaneous processing of noise reduction and edge enhancement using the Laplacian filter, the reliability of feature extraction can be increased for various road lane patterns. Since noise can be removed by using saturation and brightness of HSI color model. Also it searches for the road lane's color information and extracts characteristics. The real road experimental results are presented to evaluate the effectiveness of the proposed method.

  • PDF

Histogram-based road border line extractor for road extraction from satellite imagery (위성영상에서 도로 추출을 위한 히스토그램 기반 경계선 추출자)

  • Lee, Dong-Hoon;Kim, Jong-Hwa;Choi, Heung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.28-34
    • /
    • 2007
  • A histogram-based road border line extractor is proposed for an efficient road extraction from the high-resolution satellite imagery. The road border lines are extracted from an edge strength map based on the directional histogram difference between the road and the non-road region. The straight and the curved roads are extracted hierarchically from the edge strength map of the original image and the segmented road cluster images, and the road network is constructed based on the connectivity. Unlike the conventional approaches based on the spectral similarity, the proposed road extraction method is more robust to noise because it extracts roads based on the histogram, and is able to extract both the location and the width of roads. In addition, the proposed method can extract roads with various spectral characteristics by identifying the road clusters automatically. Experimental results on IKONOS multi-spectral satellite imagery with high spatial resolution show that the proposed method can extract the straight and the curved roads as well as the accurate road border lines.

A Study on the Extraction of Road & Vehicles Using Image Processing Technique (영상처리 기술을 이용한 도로 및 차량 추출 기법에 관한 연구)

  • Ga, Chill-O;Byun, Young-Gi;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.3-9
    • /
    • 2005
  • The extraction of traffic information based on image processing is under broad research recently because the method based on image processing takes less cost and effort than the traditional method based on physical equipment. The main purpose of the algorithm based on image processing is to extract vehicles from an image correctly. Before the extraction, the algorithm needs the pre-processing such as background subtraction and binary image thresholding. During the pre-processing much noise is brought about because roadside tree and passengers in the sidewalk as well as vehicles are extracted as traffic flow. The noise undermines the overall accuracy of the algorithm. In this research, most of the noise could be removed by extracting the exact road area which does not include sidewalk or roadside tree. To extract the exact road area, traffic lanes in the image were used. Algorithm speed also increased. In addition, with the ratio between the sequential images, the problem caused by vehicles' shadow was minimized.

  • PDF

A Road Extraction Algorithm using Mean-Shift Segmentation and Connected-Component (평균이동분할과 연결요소를 이용한 도로추출 알고리즘)

  • Lee, Tae-Hee;Hwang, Bo-Hyun;Yun, Jong-Ho;Park, Byoung-Soo;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.359-364
    • /
    • 2014
  • In this paper, we propose a method for extracting a road area by using the mean-shift method and connected-component method. Mean-shift method is very effective to divide the color image by the method of non-parametric statistics to find the center mode. Generally, the feature points of road are extracted by using the information located in the middle and bottom of the road image. And it is possible to extract a road region by using this feature-point and the partitioned color image. However, if a road region is extracted with only the color information and the position information of a road image, it is possible to detect not only noise but also off-road regions. This paper proposes the method to determine the road region by eliminating the noise with the closing / opening operation of the morphology, and by extracting only the portion of the largest area using a connected-components method. The proposed method is simulated and verified by applying the captured road images.

Extraction of Road from Color Map Image (칼라 지도 영상에서 도로 정보 추출)

  • Ahn, Chang;Choi, Won-Hyuk;Lee, Sang-Burm
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.3
    • /
    • pp.871-879
    • /
    • 1997
  • The comversion of printed maps into computerixed data bases is an enormous rask. Thus the autmaotion of the conversion process is essential. Efficient computer representation of printed maps and line drawings depends on codes assigened to chracaters, symbools, and vestor representation of the graphics. In many cases, maps ard constructed in a number of layers, where each layer is printed in a distinct color, and it represents a subste of the map infromation. In order to properly repressnet road information from color map images, an automatic road extraction algorithm is proposed. Road image is separated from graghics by color segmentation, and then restored by the proposed concurrent conditional dilation operation. The internal and external noise of the road image is eliminated by opening and closing operation. By thining and vectorizing line segments, the desited road information is extracted.

  • PDF

EXTRACTION OF LANE-RELATED INFORMATION AND A REAL-TIME IMAGE PROCESSING ONBOARD SYSTEM

  • YI U. K.;LEE W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.171-181
    • /
    • 2005
  • The purpose of this paper is two-fold: 1) A novel algorithm in order to extract lane-related information from road images is presented; 2) Design specifications of an image processing onboard unit capable of extracting lane­related information in real-time is also presented. Obtaining precise information from road images requires many features due to the effects of noise that eventually leads to long processing time. By exploiting a FPGA and DSP, we solve the problem of real-time processing. Due to the fact that image processing of road images relies largely on edge features, the FPGA is adopted in the hardware design. The schematic configuration of the FPGA is optimized in order to perform 3 $\times$ 3 Sobel edge extraction. The DSP carries out high-level image processing of recognition, decision, estimation, etc. The proposed algorithm uses edge features to define an Edge Distribution Function (EDF), which is a histogram of edge magnitude with respect to the edge orientation angle. The EDF enables the edge-related information and lane-related to be connected. The performance of the proposed system is verified through the extraction of lane-related information. The experimental results show the robustness of the proposed algorithm and a processing speed of more than 25 frames per second, which is considered quite successful.

Extraction of quasi-static component from vehicle-induced dynamic response using improved variational mode decomposition

  • Zhiwei Chen;Long Zhao;Yigui Zhou;Wen-Yu He;Wei-Xin Ren
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.155-169
    • /
    • 2023
  • The quasi-static component of the moving vehicle-induced dynamic response is promising in damage detection as it is sensitive to bridge damage but insensitive to environmental changes. However, accurate extraction of quasi-static component from the dynamic response is challenging especially when the vehicle velocity is high. This paper proposes an adaptive quasi-static component extraction method based on the modified variational mode decomposition (VMD) algorithm. Firstly the analytical solutions of the frequency components caused by road surface roughness, high-frequency dynamic components controlled by bridge natural frequency and quasi-static components in the vehicle-induced bridge response are derived. Then a modified VMD algorithm based on particle swarm algorithm (PSO) and mutual information entropy (MIE) criterion is proposed to adaptively extract the quasi-static components from the vehicle-induced bridge dynamic response. Numerical simulations and real bridge tests are conducted to demonstrate the feasibility of the proposed extraction method. The results indicate that the improved VMD algorithm could extract the quasi-static component of the vehicle-induced bridge dynamic response with high accuracy in the presence of the road surface roughness and measurement noise.

Road Extraction by the Orientation Perception of the Isolated Connected-Components (고립 연결-성분의 방향성 인지에 의한 도로 영역 추출)

  • Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Road identification is the important task for extracting a road region from the high-resolution satellite images, when the road candidates is extracted by the pre-processing tasks using a binarization, noise removal, and color processing. Therefore, we propose a noble approach for identifying a road using the orientation-selective spatial filters, which is motivated by a computational model of neuron cells found in the primary visual cortex. In our approach, after the neuron cell typed spatial filters is applied to the isolated connected-labeling road candidate regions, proposed method identifies the region of perceiving the strong orientation feature with the real road region. To evaluate the effectiveness of the proposed method, the accuracy&error ratio in the confusion matrix was measured from road candidates including road and non-road class. As a result, the proposed method shows the more than 92% accuracy.

A FUZZY NEURAL NETWORK-BASED DECISION OF ROAD IMAGE QUALITY FOR THE EXTRACTION OF LANE-RELATED INFORMATION

  • YI U. K.;LEE J. W.;BAEK K. R.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • We propose a fuzzy neural network (FNN) theory capable of deciding the quality of a road image prior to extracting lane-related information. The accuracy of lane-related information obtained by image processing depends on the quality of the raw images, which can be classified as good or bad according to how visible the lane marks on the images are. Enhancing the accuracy of the information by an image-processing algorithm is limited due to noise corruption which makes image processing difficult. The FNN, on the other hand, decides whether road images are good or bad with respect to the degree of noise corruption. A cumulative distribution function (CDF), a function of edge histogram, is utilized to extract input parameters from the FNN according to the fact that the shape of the CDF is deeply correlated to the road image quality. A suitability analysis shows that this deep correlation exists between the parameters and the image quality. The input pattern vector of the FNN consists of nine parameters in which eight parameters are from the CDF and one is from the intensity distribution of raw images. Experimental results showed that the proposed FNN system was quite successful. We carried out simulations with real images taken in various lighting and weather conditions, and obtained successful decision-making about $99\%$ of the time.