• Title/Summary/Keyword: Road Network Model

Search Result 273, Processing Time 0.027 seconds

A Model to Calibrate Expressway Traffic Forecasting Errors Considering Socioeconomic Characteristics and Road Network Structure (사회경제적 특성과 도로망구조를 고려한 고속도로 교통량 예측 오차 보정모형)

  • Yi, Yongju;Kim, Youngsun;Yu, Jeong Whon
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.93-101
    • /
    • 2013
  • PURPOSES : This study is to investigate the relationship of socioeconomic characteristics and road network structure with traffic growth patterns. The findings is to be used to tweak traffic forecast provided by traditional four step process using relevant socioeconomic and road network data. METHODS: Comprehensive statistical analysis is used to identify key explanatory variables using historical observations on traffic forecast, actual traffic counts and surrounding environments. Based on statistical results, a multiple regression model is developed to predict the effects of socioeconomic and road network attributes on traffic growth patterns. The validation of the proposed model is also performed using a different set of historical data. RESULTS : The statistical analysis results indicate that several socioeconomic characteristics and road network structure cleary affect the tendency of over- and under-estimation of road traffics. Among them, land use is a key factor which is revealed by a factor that traffic forecast for urban road tends to be under-estimated while rural road traffic prediction is generally over-estimated. The model application suggests that tweaking the traffic forecast using the proposed model can reduce the discrepancies between the predicted and actual traffic counts from 30.4% to 21.9%. CONCLUSIONS : Prediction of road traffic growth patterns based on surrounding socioeconomic and road network attributes can help develop the optimal strategy of road construction plan by enhancing reliability of traffic forecast as well as tendency of traffic growth.

Generalization of Road Network using Logistic Regression

  • Park, Woojin;Huh, Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.91-97
    • /
    • 2019
  • In automatic map generalization, the formalization of cartographic principles is important. This study proposes and evaluates the selection method for road network generalization that analyzes existing maps using reverse engineering and formalizes the selection rules for the road network. Existing maps with a 1:5,000 scale and a 1:25,000 scale are compared, and the criteria for selection of the road network data and the relative importance of each network object are determined and analyzed using $T{\ddot{o}}pfer^{\prime}s$ Radical Law as well as the logistic regression model. The selection model derived from the analysis result is applied to the test data, and road network data for the 1:25,000 scale map are generated from the digital topographic map on a 1:5,000 scale. The selected road network is compared with the existing road network data on the 1:25,000 scale for a qualitative and quantitative evaluation. The result indicates that more than 80% of road objects are matched to existing data.

Saliency-Assisted Collaborative Learning Network for Road Scene Semantic Segmentation

  • Haifeng Sima;Yushuang Xu;Minmin Du;Meng Gao;Jing Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.861-880
    • /
    • 2023
  • Semantic segmentation of road scene is the key technology of autonomous driving, and the improvement of convolutional neural network architecture promotes the improvement of model segmentation performance. The existing convolutional neural network has the simplification of learning knowledge and the complexity of the model. To address this issue, we proposed a road scene semantic segmentation algorithm based on multi-task collaborative learning. Firstly, a depthwise separable convolution atrous spatial pyramid pooling is proposed to reduce model complexity. Secondly, a collaborative learning framework is proposed involved with saliency detection, and the joint loss function is defined using homoscedastic uncertainty to meet the new learning model. Experiments are conducted on the road and nature scenes datasets. The proposed method achieves 70.94% and 64.90% mIoU on Cityscapes and PASCAL VOC 2012 datasets, respectively. Qualitatively, Compared to methods with excellent performance, the method proposed in this paper has significant advantages in the segmentation of fine targets and boundaries.

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.

Indexing Method for Constraint Moving Objects Using Road Connectivity (도로의 연결성을 이용한 제약적 이동 객체에 대한 색인 기법)

  • Bok, Kyoung-Soo;Yoon, Ho-Won;Seo, Dong-Min;Rho, Jin-Seok;Cho, Ki-Hyung;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.7
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we propose an indexing method for efficiently updating current positions of moving objects on road networks. The existing road network models increase update costs when objects move to adjacent road segments because their connectivity is not preserved. We propose an intersection based network model and a new index structure to solve this problem. The proposed intersection based network model preserves network connectivity through splitting road networks to contain intersection nodes always. The proposed index structure In our experiments, we show that our method is about 3 times faster than an existing index structure in terms of update costs.

A Study on Optimal Planning of Sustainable Rural Road Path based on Infrastructure for Green-Tourism and Public Service (그린투어리즘 및 공공서비스 기반의 지속가능한 농촌도로노선의 최적계획에 관한 연구)

  • Kim, Dae-Sik;Chung, Ha-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.1 s.26
    • /
    • pp.1-8
    • /
    • 2005
  • The purpose of this study is to develop a simulation model of rural road path for infrastructure of green-tourism and public service in rural areas. This study makes an objective function for moving cost minimization considering car travel time according to road characteristics, which can route the optimal shortest road paths between the center places and all rear villages, based on GIS coverages of road-village network for connecting between center places and rural villages as input data of the model. In order to verify the model algorithm, a homogeneous hexagonal network, assuming distribution of villages with same population density and equal distance between neighborhood villages on a level plane area, was tested to simulate the optimal paths between the selected center nodes and the other rear nodes, so that the test showed reasonable shortest paths and road intensity defined in this study. The model was also applied to the actual rural area, Ucheon-myun, which is located on Hoengsung-gun, Kangwon-do, with 72 rural villages, a center village (Uhang, 1st center place) in the area, a county conte. (Hoengsung-eup, 2nd center place), and a city (Wonju, 3rd center place), as upper settlement system. The three kinds of conte. place, Uhang, Hoengsung-eup, and Wonju, were considered as center places of three scenarios to simulate the optimal shortest paths between the centers and rural villages, respectively. The simulation results on the road-village network with road information about pavement and width of road show that several spans having high intensity of road are more important that the others, while some road spans have low intensity of road.

Black Ice Detection Platform and Its Evaluation using Jetson Nano Devices based on Convolutional Neural Network (CNN)

  • Sun-Kyoung KANG;Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.

Multi-Scale Dilation Convolution Feature Fusion (MsDC-FF) Technique for CNN-Based Black Ice Detection

  • Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2023
  • In this paper, we propose a black ice detection system using Convolutional Neural Networks (CNNs). Black ice poses a serious threat to road safety, particularly during winter conditions. To overcome this problem, we introduce a CNN-based architecture for real-time black ice detection with an encoder-decoder network, specifically designed for real-time black ice detection using thermal images. To train the network, we establish a specialized experimental platform to capture thermal images of various black ice formations on diverse road surfaces, including cement and asphalt. This enables us to curate a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Additionally, in order to enhance the accuracy of black ice detection, we propose a multi-scale dilation convolution feature fusion (MsDC-FF) technique. This proposed technique dynamically adjusts the dilation ratios based on the input image's resolution, improving the network's ability to capture fine-grained details. Experimental results demonstrate the superior performance of our proposed network model compared to conventional image segmentation models. Our model achieved an mIoU of 95.93%, while LinkNet achieved an mIoU of 95.39%. Therefore, it is concluded that the proposed model in this paper could offer a promising solution for real-time black ice detection, thereby enhancing road safety during winter conditions.

Condition assessment model for residential road networks

  • Salman, Alaa;Sodangi, Mahmoud;Omar, Ahmed;Alrifai, Moath
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.361-378
    • /
    • 2021
  • While the pavement rating system is being utilized for periodic road condition assessment in the Eastern Region municipality of Saudi Arabia, the condition assessment is costly, time-consuming, and not comprehensive as only few parts of the road are randomly selected for the assessment. Thus, this study is aimed at developing a condition assessment model for a specific sample of a residential road network in Dammam City based on an individual road and a road network. The model was developed using the Analytical Hierarchy Process (AHP) according to the defect types and their levels of severity. The defects were arranged according to four categories: structure, construction, environmental, and miscellaneous, which was adopted from sewer condition coding systems. The developed model was validated by municipality experts and was adjudged to be acceptable and more economical compared to results from the Eastern region municipality (Saudi Arabia) model. The outcome of this paper can assist with the allocation of the government's budget for maintenance and capital programs across all Saudi municipalities through maintaining road infrastructure assets at the required level of services.

The Research about Map Model of 3D Road Network for Low-carbon Freight Transportation (저탄소 화물운송체계 구현을 위한 3차원 도로망도 모델에 관한 연구)

  • Lee, Sang-Hoon
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.29-36
    • /
    • 2012
  • The low-carbon freight transportation system was introduced due to increase traffic congestion cost and carbon-dioxide for global climate change according to expanding city logistics demands. It is necessary to create 3D-based road network map for representing realistic road geometry with consideration of fuel consumption and carbon emissions. This study propose that 3D road network model expressed to realistic topography and road structure within trunk road for intercity freight through overlaying 2D-based transport-related thematic map and 1m-resolution DEM. The 3D-based road network map for the experimental road sections(Pyeongtaek harbor-Uiwang IC) was verified by GPS/INS survey and fuel consumption simulation. The results corresponded to effectively reflect realistic road geometry (RMSE=0.87m) except some complex structure such as overpass, and also actual fuel consumption. We expect that Green-based freight route planning and navigation system reflected on 3D geometry of complex road structure will be developed for effectively resolving energy and environmental problems.