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Abstract  

In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome 

black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in 

order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) 

technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice 

images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better 

performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have 

achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge 

device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster 

segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation 

speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road 

surface management in the road traffic monitoring department.  
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1. Introduction1 
 

Black ice, a thin layer of ice that forms on road surfaces, 

can significantly reduce road friction. It typically develops 

when temperatures drop below freezing, causing moisture 

on the road to freeze. This transparent hazard is hard to spot 

and is often mistaken for wet or snowy roads, making it 

especially treacherous for both pedestrians and drivers. 

Black ice tends to occur in shaded areas like mountainous 

regions, tree-lined roads, tunnel entrances, and bridges 

where sunlight can't reach. This phenomenon poses a 
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substantial risk to motorists, leading to a higher likelihood 

of accidents, injuries, and even fatalities (Park et al., 2017, 

Smith et al., 2017). According to the Federal Highway 

Administration, more than 116,800 people are injured in 

vehicle accidents caused by snowy, slushy, or icy roads 

annually in the USA.  

Moreover, accidents caused by black ice can lead to 

secondary and tertiary damages, resulting in major disasters 

and an increased risk of chain collisions. While recent 

advancements in road condition detection-based early 

warning systems for traffic safety have gained attention, 
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comprehensive research on black ice detection remains 

limited. 

In recent years, there has been a proliferation of effective 

image classification networks, driven by advancements in 

deep learning technology. However, most road surveillance 

cameras utilize conventional cameras that capture visible 

light in the RGB spectrum, which spans from 0.43μm to 

0.79μm. In environments with insufficient lighting, the 

quality of these images can easily degrade. In contrast, 

thermal cameras rely on the principle of capturing thermal 

radiation emitted by all objects with temperatures higher 

than absolute zero. They operate around the clock and are 

impervious to adverse weather conditions such as clouds 

and fog. Additionally, thermal cameras exhibit high 

sensitivity and extended detection ranges, making them 

indispensable in target recognition and detection 

applications. They find widespread use in security 

monitoring, remote sensing, defense, and various other 

fields. 

Therefore, this paper conducts research on the process of 

black ice formation, creates a simulation environment for 

black ice formation, collects thermal road black ice images 

using thermal cameras, and establishes a dataset of thermal 

road black ice. In this paper, the cloud-edge collaborative 

architecture of early black ice detection and warning system 

is proposed. This platform is designed to enhance the 

accuracy of road black ice extraction by applying a 

convolutional neural network-based black ice segmentation 

network model and adopt the image detection enhancement 

technique such ad a multi-scale dilation convolution feature 

fusion (MsDC-FF) technique, enhancing the CNN's ability 

to identify black ice regions effectively. Furthermore, this 

detection and warning system is designed to deploy it on a 

high-performance cloud data processing center.  

Section 2 provides an overview of related work on black 

ice detection and Section 3 presents the methodology and 

architectural details of the proposed real-time warning 

system in detail. In Section 4, we will discuss the 

experimental setup and results, including the construction of 

our thermal road black ice dataset. The concluding remark 

is presented in the last section.  

 

 

2. Related Work  

 
Many studies have explored black ice detection using 

image-based methods, Q. Lin et al. (2017) designed a road 

icing detection system based on OpenCV+Python, and a 

Support Vector Machine (SVM) classifier was employed to 

identify four types of road conditions: dry, wet, snowy, and 

icy. Habib Tabatabai et al. (2017) conducted a study to 

detect black ice, ice and water in roads and bridges using 

sensors embedded in concrete. Youngis E. Abdalla et al 

(2017) and Xinxu Ma et al. (2020) proposed systems for 

detecting black ice using different technologies. Youngis E. 

Abdalla et al. (2017) used Kinect to classify ice types and 

measure thickness, showing effective black ice detection. 

Xinxu Ma et al. (2020) employed three wavelengths of non-

contact optical technology to distinguish ice conditions and 

successfully identified black ice through reflectance. Both 

studies suggest effective methods for black ice detection. 

Hojun Lee et al. (2020) created a black ice detection dataset 

using Google image search and utilized CNN deep learning 

techniques to detect dry, wet, snowy, and black ice 

conditions, achieving a recognition rate of 96%. These 

research works highlight the effectiveness of using CNN-

based methods for black ice detection.  

With the widespread availability of cameras, images 

have become a convenient, fast, and cost-effective method 

for acquiring road information. Previous research on image 

detection has generally adopted neural network models such 

as FCN, U-Net, DeepLabv3+, PSPNet, ENet, and LinkNet. 

FCN: Long, Shelhamer & Darrel (2015) introduced a 

Fully Convolutional Network with imprecise edge 

segmentation due to information loss during down-sampling 

and up-sampling. 

U-Net: Ronneberger et al. (2015) proposed an encoder-

decoder model with concatenation of feature maps for 

improved segmentation. 

DeepLabv3+: Chen et al. (2017) revisited DeepLabv3+ 

with dilated convolutions, ASPP, and CRF post-processing 

for accurate segmentation. 

PSPNet: Zhao et al. (2017) combined ResNet and dilated 

networks with parallel pooling and up-sampling for scale-

specific feature information and refined segmentation. 

ENet: Paszke et al. (2016) introduced an efficient neural 

network with bottleneck modules and filter decomposition 

for precise segmentation and reduced complexity. 

LinkNet: Chaurasia & Culurciello (2017) proposed a 

network with residual modules for enhanced feature 

extraction and optimized computation in real-time 

segmentation. 

 

 

3. Methodology 
 

3.1. Platform Architecture of Real-Time Warning 

System Black Ice Detection 
 

Typically, images captured by cameras installed on roads 

are sent directly to cloud data centers for processing and 

recognition. However, transmitting all images to the cloud 

data center can lead to increased end-to-end latency and 

higher bandwidth consumption, causing data transmission 

to become a bottleneck in data processing. Since the actual 

collected images often include a significant amount of 
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redundant frames, such as road footage without black ice, 

sending this meaningless data to the cloud data center results 

in not only wasted storage but also more severe end-to-end 

latency and bandwidth consumption. 

Furthermore, sending images to a remote cloud data 

center for processing and recognition in road traffic 

monitoring does not meet the real-time requirements of 

traffic information. To address these issues, this paper 

proposes a cloud-edge collaborative warning system for 

real-time road black ice, combining edge computing 

technology and deep learning, as illustrated in Figure 1. 

 

 
Figure 1: Illustration of a cloud- edge collaborative 

wanring system of real-time road black ice 
 

As shown in Figure 1, edge computing technology 

provides a certain level of computational capability to road 

surveillance cameras. By adding edge computing modules 

near surveillance cameras and deploying the inference 

portion of a small deep learning network on the edge 

computing module, collected image data can be processed 

and recognized directly, significantly reducing the 

computational burden on cloud data processing centers. 

This, in turn, reduces system-wide latency and power 

consumption, enabling real-time road black ice alerts. 

The proposed cloud-edge collaborative architecture of 

Figure 1 is designed to enhance the accuracy of road black 

ice extraction by training a deep convolutional neural 

network-based black ice segmentation network model and 

deploying it on a high-performance cloud data processing 

center. Additionally, the trained deep learning model is 

deployed on edge devices to meet the real-time requirements 

for black ice area detection. 

 

3.2. System Model of Real-Time Warning System 

Black Ice Detection 
 

The proposed real-time road black ice "cloud-edge" 

collaborative warning system consists of three layers: the 

thermal imaging data collection layer, the edge computing 

layer, and the cloud data processing center, which serves as 

the road traffic monitoring center. This configuration is 

depicted in Figure 2. 

 

Infrared Camera IoT Layer: The TPV-IAHDR thermal 

camera is used to collect road images. 

Edge Computing Layer: The edge computing layer is 

primarily responsible for inference regarding road black ice. 

In this paper, the NVIDIA Jetson Nano edge development 

board is utilized to download and deploy the black ice 

segmentation model trained in the cloud. It performs real-

time analysis of road images collected by the thermal 

camera, segmenting the black ice areas. When black ice 

areas are detected in the collected images, it classifies the 

severity grade based on the segmented black ice size, 

displays warnings on LED display boards in real-time, sends 

text messages to the road monitoring center, and saves black 

ice area road images collected every 10 seconds while 

periodically uploading them to the cloud. 

 

 
 

Figure 2: System Model of Cloud-edge Warning 

Collaborative System 

 

Cloud Data Processing Center Layer: In this paper, a 

cloud data processing center is simulated using an Ubuntu 

server. The deep learning network is trained using the 

constructed thermal road black ice dataset to create a deep 

convolution-based thermal road black ice area segmentation 

network model. This trained model is deployed on the edge 

computing nodes. It intercepts real-time warning messages 

received from the edge layer, makes road management 

decisions, and periodically downloads the stored thermal 

road black ice images from the edge nodes to execute the 

road black ice area segmentation network model 

 

3.3. Workflow of the Cloud-edge Warning 

Collaborative System 
 

The approach presented in this paper includes both an 

offline module for training the black ice area segmentation 

network and an online module for real-time black ice area 

segmentation. 

Road Information 

Monitoring Center

Black Ice

Prediction Region

Edge Board 

Infrared Camera

1KM Ahead
Black Ice Area

Edge Board 

Infrared Camera

Edge Cloud 
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Figure 3: Illustration of black ice semantic segmentation 

training module (offline module) 

 

As shown in Figure 3, the offline module involves 

creating a simulated road black ice generation process to 

construct a road black ice experimental environment. This 

simulation is carried out to generate road black ice using the 

TPV-IAHDR thermal camera, collecting black ice images 

from both cement and asphalt road materials. Subsequently, 

a black ice dataset is created using the collected images. 

Using this constructed black ice dataset, a deep convolution-

based black ice semantic segmentation network model is 

trained on a high-performance server in the simulation cloud 

processing center. Finally, the trained black ice semantic 

segmentation network model is deployed on the Jetson Nano 

edge development board. The flowchart of the real-time 

road black ice area warning module is depicted in Figure 4. 

 

 

 
 

Figure 4: Workflow of Real-time Black Ice Region 

Warning Module 
 

In the real-time black ice area warning module, the road 

surface temperature falling below 0°C serves as the trigger 

signal for the entire system. When the road surface 

temperature is measured to be below 0°C, the system 

initiates road surface image collection and subsequent 

processing. Temperature measurement is obtained through 

temperature sensors, and if the temperature is determined to 

be above 0°C, the system enters a dormant state for one hour 

before rechecking the temperature. If the road surface 

temperature is below 0°C, the thermal camera is activated, 

and road surface images are collected. The images are 

processed using the black ice semantic segmentation 

network model trained in the offline module to recognize 

black ice areas within the images. 

If no black ice areas are detected in the recognized 

images, the system enters a dormant state for one hour 

before performing another temperature check. However, if 

black ice areas are identified in the collected images, they 

are classified based on the size of the segmented black ice 

areas. When the size of the black ice area is greater than half 

of the collected image, the road LED warning display board 

shows "1km ahead, severe black ice area." If the black ice 

area size falls within [1/10, 1/2] of the collected image size, 

the board displays "1km ahead, moderate black ice area." 

For black ice areas with a size in the range of [1/20, 1/10] of 

the collected image, the board displays "1km ahead, light 

black ice area." 

This real-time black ice warning system dynamically 

sends black ice severity alerts to drivers, enabling them to 

preemptively brake and reduce driving speed for safer travel. 

Simultaneously, the traffic monitoring center swiftly 

assesses the road black ice situation in response to alerts, 

takes measures to address the black ice, ensuring safe travel, 

and reducing the occurrence of traffic accidents, which 

benefits road management as well. 

 

3.4. CNN Network for Black Ice Image 

Segmentation  
 

This paper introduces a CNN-based architecture for real-

time black ice detection with an encoder-decoder network for 

infrared images. Based on constructed infrared black ice road 

data set, our CNN-based model is trained for establishing a 

comprehensive dataset of thermal road black ice images for 

a training and evaluation purpose. The block diagram of the 

CNN based network architecture is shown in Figure 5, which 

illustrates encoder and decoder block diagram of the parallel 

execution of convolution with Multi-Scale Dilated 

Convolutional Feature Fusion (MsDC-FF) module (Kang, S. 

2023).  

The network architecture adopted in this paper has been 

proposed by Kang (2023), which is divided into two parts: an 

encoder and a decoder. The encoder consists of three stages 

of encoder blocks, while the decoder consists of four stages 

of decoder blocks, as shown in Figure 5. To reduce the model 

size, the early stages of the encoder block use two 

convolution layers to reduce the resolution to one-fourth and 

restore the original image size through convolution layers 

after passing through the decoder. Figure 5 shows the 

encoder block with multi-scale dilated convolutional feature 

fusion (MsDC-FF) module with scalable dilation ratio.  

Infrared Images of 

Black Ice 

Road Surface

Image 

Processing

Data 

Training
Image

Capturing

Infrared Black Ice 

Road Dataset

Black Ice Images 
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Figure 5: Experimental setup picture of Taking Images of Infrared Road Black Ice Experiment; (a) Image Saving, (b) 

Temperature Control Box, (c) Image Capturing, (d) Samples of Asphalt Road and Concrete Road Pavement. 
 

 
 
Figure 6: Encoder and Decoder Block Diagram of the Paralled Execution of Convoultion with Multi-

Scale Dilated Convolutional Feature Fusion (MsDC-FF) Module (Kang, S. 2023). 

 

4. Simulation and Results  
 

4.1. Experimental Setup  

 
The experimental study of road black ice formation 

involved creating a simulation experimental environme

nt for road black ice generation, ultimately building a 

thermal road black ice dataset. The simulation experim

ental environment is depicted in Figure 6. 
To obtain various black ice images, this paper followed 

the process outlined in Figure 6. Ten 1-meter square asphalt 

and cement roads, each with a thickness of 5cm, were 

created. These roads were installed in a freezing facility, and 

water was sprayed on them. Subsequently, thermal cameras 

were used to capture images of the black ice formation. 

Different cases were created by varying the area and 

location of water application, resulting in a total of 10 

different scenarios. 

 

4.2. Image Dataset  

 
The simulation setup used in this paper is as followings: 

TPV-IAHDR thermal cameras were used to capture the 

entire process of black ice formation from the beginning in 

a video with a resolution of 1280x720. Figure 7 illustrates 

an example of the gradual formation of black ice, starting 

from a wet road surface, in one specific case. 
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Figure 7: An example of the gradual formation of black ice

 on a wet road surface. 
 

These thermal camera images are used for training image 

dataset, by sampling and cropping frames at intervals of 

200ms. This established total 1,156 black ice road images 

for 10 different cases and then, these images were divided 

into training, validation, and test datasets according to a ratio 

of 6:2:2. Therefore, the thermal road black ice dataset 

constructed in this paper is as shown in Table 1. The image 

dataset of the thermal road black ice was generated on 

asphalt roads and cement roads for different cases.  

 
Table 1: Number of infrared black ice road furface images 

Dataset Type No. of Images  

Train Dataset 697 

Validation Dataset 229 

Test Dataset 229 

Total Dataset 1156 

 

The examples of the thermal road black ice image dataset 

constructed in this paper are shown in Figure 8. Figure 8(a) 

displays three example images of black ice generated on 

asphalt roads, and Figure 8(b) shows seven example images 

of black ice generated on cement roads. 

 

 

 
a) Asphalt Cases 

 

b) Cement Cases 

 
Figure 8: Examples of Infrared Road Black Ice Image 

in Different Cases 
 

These images are labeled by open-source image 

annotation tool, Labelme as shown in Figure 9. This displays 

some of the original images used in the paper along with 

their corresponding mask images. 

 

 
 

Figure 9: Example of original images and labeled or 

masked images of black ice generated on asphalt roads 
and cement roads for different cases 

 

4.3. Experiments and Results on Jetson Nano 

 
The experimental setup was conducted on the following 

platform: to use Ubuntu 18.04 LTS as OS, to use GPU of 

four NVIDIA GeForce RTX 2080 Ti with 11GB of memory 

each. The deep learning frameworks used were Keras and 

TensorFlow. In the simulation, the number of epochs was 

set to 100, and batch sizes of 1, 2, 4, 8, and 16 were tested. 

During the training process, the cross-entropy loss function 

was utilized, and the Adam optimizer was employed with a 
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learning rate of 0.001. Learning rate decay was applied to 

expedite the learning process. 

The performance comparison metric of the accuracy of 

black ice area detection used in this paper is mIoU (Mean 

Intersection over Union) metric. Meanwhile IoU is a 

measure of the overlap between the segmentation result and 

the ground truth, mIoU is the ratio of the intersection and 

union of quantized results and ground truth values as in Eq. 

(1). 

𝑚IoU =
1

𝑁
 ∑

Χ𝑖𝑖

𝑇𝑖+∑ (Χ𝑗𝑖−Χ𝑖𝑖)𝑁
𝑗=1

𝑁
𝑖=1           (1) 

where N represents the number of pixel classes in the 

image, Ti denotes the total number of pixels for class i, Χ𝑖𝑖 

represents the number of pixels where the true class is i and 

the predicted class is also i, and Χ𝑗𝑖 represents the number 

of pixels where the true class is i but the predicted class is j. 

mIoU is a simple and representative metric widely used to 

evaluate the segmentation results of networks in most image 

segmentation tasks. 

The results of real-time thermal imaging road black ice 

area segmentation on Jetson Nano are as shown in Table 2, 

where FPS (frames per second) represents the total number 

of video segments that can be processed per second.  

 
Table 2: Experimental Results on Jetson Nano 

Network  
Model 

FPS 
mIoU(%) 

Black Ice  
IoU(%) 

8  16 8 16 

U-Net 0.24 69.69 - 61.38 - 

PSPnet 0.14 85.85 - 83.27 - 

DeepLabV3+ 0.19 93.65 - 88.20 - 

ENet 1.95 94.35 94.36 93.81 93.10 

LinkNet 3.72 95.39 95.48 94.37 94.33 

MsCD-FF Net(P2) 5.53 95.93 95.61 94.87 94.48 

MsCD-FF Net(P3) 5.26 96.16 96.02 95.18 94.94 

MsCD-FF Net(P4) 4.98 96.35 96.07 95.32 94.97 

MsCD-FF Net(P5) 4.64 96.39 95.90 95.41 94.75 

MsCD-FF Net(P6) 4.35 96.40 96.31 95.34 95.25 

MsCD-FF Net(P7) 4.10 96.43 96.33 95.43 95.29 

MsCD-FF Net(P8) 3.84 96.44 96.31 95.48 95.25 

MsCD-FF Net(P9) 3.63 96.46 96.37 95.46 95.34 

 

As can be seen in Table 2, the segmentation speeds of 

each network model vary significantly. Among them, U-

Net, PSPNet, and DeepLabV3+ have slower segmentation 

speeds due to their large model size and computational 

demands, with all of them achieving FPS values of 1 or 

lower, indicating that they cannot satisfy real-time black ice 

area segmentation. On the other hand, ENet and LinkNet 

achieve FPS values of 1.95 and 3.72, respectively, which 

means they can perform real-time black ice area 

segmentation. 

As shown in Figure 10, the 5 networks highlighted in 

green color of the conventional networks, while the 8 

networks highlighted in orange color represent the MsCD-

FF Net(Pi) network adopted and proposed by Kang (2023). 

Overall, the network that fuses features in parallel using 

multi-scale dilated convolutions with different dilation rates 

according to the proposed resolution in this paper had faster 

segmentation speeds due to its smaller model parameters. 

Except for MsCD-FF Net(9), which had an FPS of 3.63, 

slightly lower than LinkNet, the rest of the models had 

higher FPS values compared to LinkNet. Among these, 

MsCD-FF Net(2) had the fastest segmentation speed at 5.53 

FPS, while the other networks had slower segmentation 

speeds and lower FPS values as the number of parallel 

dilated convolutions increased, resulting in higher 

computational requirements. 

 

 
 

Figure 10: FPS comparisons of neural networks when 

using Jetson nano devices 
 

The screen for real-time thermal imaging road black ice 

area segmentation on Jetson Nano is shown in Figure 11. In 

the top-left corner of Figure 10, the black ice segmentation 

FPS of the network is displayed, and in real-time, black ice 

severity level alerts are also presented based on the results 

of the black ice segmentation. 

 

 
 

Figure 11: Black Ice Level Warning in Real-time on 

Jetson Nano 
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5. Conclusion  

 
The proposed a black ice detection platform framework 

using CNNs presents a real-time based early warning 

platform using CNN-based architecture. Furthermore, in 

order to enhance the accuracy of black ice detection, MsDC-

FF with a specialized experimental platform using a 

comprehensive dataset of thermal road black ice images are 

setup for an experimental simulation. The proposed 

platform has achieved real-time segmentation of road black 

ice areas by deploying a road black ice area segmentation 

network on the edge device Jetson Nano devices. It is shown 

that the proposed model using MsCD-FF with different 

dilation rates had faster segmentation speeds due to its 

smaller model parameters. Except for MsCD-FF Net(9), 

which had an FPS of 3.63, slightly lower than LinkNet, the 

rest of the models had higher FPS values compared to 

LinkNet. Among these MsCD-FF Net(2) model had the 

fastest segmentation speed at 5.53 FPS.  
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