• Title/Summary/Keyword: Road Image

Search Result 736, Processing Time 0.028 seconds

Automatic Identification of Road Sign in Mobile Mapping System (모바일매핑시스템을 이용한 도로표지판 자동 추출에 관한 연구)

  • Jeong, Jae-Seung;Jeong, Dong-Hoon;Kim, Byung-Guk;Sung, Jung-Gon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.221-224
    • /
    • 2007
  • MMS(Mobile Mapping System) generates a efficient image data for mapping and facility management. However, this image data of MMS has many difficulties in a practical use because of huge data volume. Therefore the important information likes road sign post must be extracted from huge MMS image data. In Korea, there is the HMS(Highway Management System) to manage a national road that acquire the line and condition of road from the MMS images. In the HMS each road sign information is manually inputted by the keyboard from moving MMS. This manually passive input way generate the error like inaccurate position, mistaking input in this research we developed the automatic road sign identifying technique using the image processing and the direct geo-referencing by GPS/INS data. This development brings not only good flexibility for field operations, also efficient data processing in HMS.

  • PDF

Coordinates Matching in the Image Detection System For the Road Traffic Data Analysis

  • Kim, Jinman;Kim, Hiesik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.35.4-35
    • /
    • 2001
  • Image detection system for road traffic data analysis is a real time detection system using image processing techniques to get the real-time traffic information which is used for traffic control and analysis. One of the most important functions in this system is to match the coordinates of real world and that of image on video camera. When there in no way to know the exact position of camera and it´s height from the object. If some points on the road of real world are known it is possible to calculate the coordinates of real world from image.

  • PDF

Recognition Model of Road Signs Using Image Segmentation Algorithm (세그멘테이션 알고리즘을 사용한 도로 Sign 인식 모델)

  • Huang, Ying;Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.233-237
    • /
    • 2013
  • Image recognition is an important research area of pattern recognition. This paper studies that the image segmentation algorithm theory and its application in road signs recognition system. In this paper We studied a systematic study for road signs and we have made the recognition algorithm. This paper is divided in image segmentation part and image recognition part for the road signs recognition. The experimental results show that the road signs recognition model can make effective use in smart phone system, and the model can be used in many other fields.

AUTOMATIC ROAD NETWORK EXTRACTION. USING LIDAR RANGE AND INTENSITY DATA

  • Kim, Moon-Gie;Cho, Woo-Sug
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.79-82
    • /
    • 2005
  • Recently the necessity of road data is still being increased in industrial society, so there are many repairing and new constructions of roads at many areas. According to the development of government, city and region, the update and acquisition of road data for GIS (Geographical Information System) is very necessary. In this study, the fusion method with range data(3D Ground Coordinate System Data) and Intensity data in stand alone LiDAR data is used for road extraction and then digital image processing method is applicable. Up to date Intensity data of LiDAR is being studied. This study shows the possibility method for road extraction using Intensity data. Intensity and Range data are acquired at the same time. Therefore LiDAR does not have problems of multi-sensor data fusion method. Also the advantage of intensity data is already geocoded, same scale of real world and can make ortho-photo. Lastly, analysis of quantitative and quality is showed with extracted road image which compare with I: 1,000 digital map.

  • PDF

Local Detection of Road Using Mathematical Morphology On Airborne SAR Image

  • Yang, Jin-Hyun;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.17-22
    • /
    • 2002
  • This paper is concerned with a local detection of road on an airborne SAR image. The roads can be characterized by their geometry and radiometry. Roads are assumed as linear, thin, and elongated objects that are darker than their surroundings on an airborne SAR image. With these assumptions, a series of morphological filters are applied and tested successively. This approach is simple and almost non parametric and has been successfully applied to an airborne SAR image.

  • PDF

Recognition of Driving Direction & Obstacles Using Neural Network (신경망을 이용한 차량의 주행방향과 장애물 인식에 관한 연구)

  • Kim, Myung-Soo;Yang, Sung-Hoon;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.341-343
    • /
    • 1995
  • In this paper, an algorithm is presented to recogniz the driving direction of a vehicle and obstacles in front of it based on highway road image. The algorithm employs a neural network with 27 sub sets obtained from the road image as its input. The outputs include the direction of the vehicle movement and presence or absence of obstacles. The road image, obtained by a video camera, was digitized and processed by a personal computer equipped with an image processing board.

  • PDF

Development of Digital Image Acquisition System for the Road Safety Survey and Analysis Vehicle (도로안전성 조사분석차량을 위한 영상취득시스템 개발)

  • Jeong, Dong-Hoon;Yoon, Chun-Joo;Sung, Jung-Gon
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.163-171
    • /
    • 2005
  • Current roads were designed and constructed based on the design criteria and thus those were overly simplified drivers' needs. The road criteria do not suggest the desirable range of the design values but suggest the minimum requirements for the road design. Therefore, a completed road design based on the design criteria does not always guarantee the best design in terms of safety and it sometimes violates drivers' expectation. Therefore, the ROSSAV(ROad Safety Survey and Analysis Vehicle) is being developed by the KICT to evaluate road safety and increase driving safety. In this paper, the image capture system was described in detail. The image capture system is consisted of two front view cameras, two side down-looking cameras and a synchronization device. Two front view cameras were used to take a picture of road and road facilities at the driver's viewpoint. Also, two side down-looking cameras were used to capture road surface image to extract lane markings. A synchronization device were used to generate image capturing signal at the fixed distance spacing huck as every 10m. The front view images could be used to calculate and measure highway geometry such as shoulder width because every image is saved with it's locational information. And also the side down looking images could be used to extract median lane mark which representing road alignement efficiently.

  • PDF

Day and night license plate detection using tail-light color and image features of license plate in driving road images

  • Kim, Lok-Young;Choi, Yeong-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.25-32
    • /
    • 2015
  • In this paper, we propose a license plate detection method of running cars in various road images. The proposed method first classifies the road image into day and night images to improve detection accuracy, and then the tail-light regions are detected by finding red color areas in RGB color space. The candidate regions of the license plate areas are detected by using symmetrical property, size, width and variance of the tail-light regions, and to find the license plate areas of the various sizes the morphological operations with adaptive size structuring elements are applied. Finally, the plate area is verified and confirmed with the geometrical and image features of the license plate areas. The proposed method was tested with the various road images and the detection rates (precisions) of 84.2% of day images and 87.4% of night images were achieved.

Determination of Road Image Quality Using Fuzzy-Neural Network (퍼지신경망을 이용한 도로 영상의 양불량 판정)

  • 이운근;백광렬;이준웅
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.468-476
    • /
    • 2002
  • The confidence of information from image processing depends on the original image quality. Enhancing the confidence by an algorithm has an essential limitation. Especially, road images are exposed to lots of noisy sources, which makes image processing difficult. We, in this paper, propose a FNN (fuzzy-neural network) capable oi deciding the quality of a road image prior to extracting lane-related information. According to the decision by the FNN, road images are classified into good or bad to extract lane-related information. A CDF (cumulative distribution function), a function of edge histogram, is utilized to construct input parameters of the FNN, it is based on the fact that the shape of the CDF and the image quality has large correlation. Input pattern vector to the FNN consists of ten parameters in which nine parameters are from the CDF and the other one is from intensity distribution of raw image. Correlation analysis shows that each parameter represents the image quality well. According to the experimental results, the proposed FNN system was quite successful. We carried out simulations with real images taken by various lighting and weather conditions and achieved about 99% successful decision-making.

An Onboard Image Processing System for Road Images (도로교통 영상처리를 위한 고속 영상처리시스템의 하드웨어 구현)

  • 이운근;이준웅;조석빈;고덕화;백광렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.498-506
    • /
    • 2003
  • A computer vision system applied to an intelligent safety vehicle has been required to be worked on a small sized real time special purposed hardware not on a general purposed computer. In addition, the system should have a high reliability even under the adverse road traffic environment. This paper presents a design and an implementation of an onboard hardware system taking into account for high speed image processing to analyze a road traffic scene. The system is mainly composed of two parts: an early processing module of FPGA and a postprocessing module of DSP. The early processing module is designed to extract several image primitives such as the intensity of a gray level image and edge attributes in a real-time Especially, the module is optimized for the Sobel edge operation. The postprocessing module of DSP utilizes the image features from the early processing module for making image understanding or image analysis of a road traffic scene. The performance of the proposed system is evaluated by an experiment of a lane-related information extraction. The experiment shows the successful results of image processing speed of twenty-five frames of 320$\times$240 pixels per second.