• Title/Summary/Keyword: Road Environment Perception

Search Result 37, Processing Time 0.027 seconds

Psychological Reduction Effect of Road Traffic Noise Perception by the Visual Information of Landscape components (조경요소의 영상을 이용한 도로교통소음 인지도의 심리적인 저감효과에 대한 연구)

  • Kook, Chan;Jang, Gil-Soo;Shin, Yong-kyu
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.33-36
    • /
    • 2003
  • The influence of the visual information on the sound perception would be considerable. Furthermore, if the sound perception ranges in noisiness or annoyance beyond the loudness, it will depend much more on the shape of the visual information. This paper aims to estimate the influence of the several kinds of visual information on the perception of road traffic noise by means of the psycho-acoustic test method. The findings of present study on the influence of visual information on subjective noise perception are summarized as follows: Presenting visual images of mild and comfortable scenery reduced the noise perception reaction at the less noisy environments not exceeding 65 dB(A). At highly noisy environments exceeding 65 dB(A), however, the noise perception can be reduced by strong image of waterfall. Even eliminating the road traffic image may be helpful. Visual image of waterfall reduced the noise perception at all levels. It is inferred that the road traffic noise perception can be effectively ameliorated by presenting strong and real landscape images at any noisy environment.

Information Fusion of Cameras and Laser Radars for Perception Systems of Autonomous Vehicles (영상 및 레이저레이더 정보융합을 통한 자율주행자동차의 주행환경인식 및 추적방법)

  • Lee, Minchae;Han, Jaehyun;Jang, Chulhoon;Sunwoo, Myoungho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.35-45
    • /
    • 2013
  • A autonomous vehicle requires improved and robust perception systems than conventional perception systems of intelligent vehicles. In particular, single sensor based perception systems have been widely studied by using cameras and laser radar sensors which are the most representative sensors for perception by providing object information such as distance information and object features. The distance information of the laser radar sensor is used for road environment perception of road structures, vehicles, and pedestrians. The image information of the camera is used for visual recognition such as lanes, crosswalks, and traffic signs. However, single sensor based perception systems suffer from false positives and true negatives which are caused by sensor limitations and road environments. Accordingly, information fusion systems are essentially required to ensure the robustness and stability of perception systems in harsh environments. This paper describes a perception system for autonomous vehicles, which performs information fusion to recognize road environments. Particularly, vision and laser radar sensors are fused together to detect lanes, crosswalks, and obstacles. The proposed perception system was validated on various roads and environmental conditions with an autonomous vehicle.

Development of Autonomous Vehicle Learning Data Generation System (자율주행 차량의 학습 데이터 자동 생성 시스템 개발)

  • Yoon, Seungje;Jung, Jiwon;Hong, June;Lim, Kyungil;Kim, Jaehwan;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.162-177
    • /
    • 2020
  • The perception of traffic environment based on various sensors in autonomous driving system has a direct relationship with driving safety. Recently, as the perception model based on deep neural network is used due to the development of machine learning/in-depth neural network technology, a the perception model training and high quality of a training dataset are required. However, there are several realistic difficulties to collect data on all situations that may occur in self-driving. The performance of the perception model may be deteriorated due to the difference between the overseas and domestic traffic environments, and data on bad weather where the sensors can not operate normally can not guarantee the qualitative part. Therefore, it is necessary to build a virtual road environment in the simulator rather than the actual road to collect the traning data. In this paper, a training dataset collection process is suggested by diversifying the weather, illumination, sensor position, type and counts of vehicles in the simulator environment that simulates the domestic road situation according to the domestic situation. In order to achieve better performance, the authors changed the domain of image to be closer to due diligence and diversified. And the performance evaluation was conducted on the test data collected in the actual road environment, and the performance was similar to that of the model learned only by the actual environmental data.

Cognitive Model-based Evaluation in Dynamic Traffic System (동적 교통 시스템의 인지공학적 평가에 관한 연구)

  • Kang, Myong-Ho;Cha, Woo-Chang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.25-34
    • /
    • 2002
  • The road sign in dynamic traffic system is an important element which affects on human cognitive performance on driving. Web-based vision system simulator was developed to examine the cognition time of the road sign in dynamic environment. This experiment the cognition time of the road sign in dynamic environment. This experiment was designed in with-subject design with two factors: vehicle speed and the amount of information of the traffic sign. It measured the cognition time of the road sign through two evaluation methods: the subjective test with vision system simulator and computational cognitive model. In these two evaluations of human cognitive performance under the dynamic traffic environment, it demonstrated that subject's cognition time was affected by both the amount of information of traffic sign and driving speed.

A Study on the Perception of Personal Mobility Vehicle for the Improvement of Pedestrian Environment for the Disabled

  • Lee, Joohyung;Lee, Kyooil
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.2
    • /
    • pp.124-133
    • /
    • 2021
  • Objective: In order to secure the right to walk for the weak, such as the disabled, this study aims to suggest ways to improve the pedestrian environment by identifying factors that cause obstacles to walking. Design: Data Analysis and Perception Survey. Methods: The questionnaire was conducted separately between users of personal mobility vehicle and non-users. A total of 207 effective questionnaires were collected, and the analysis analyzed the perception of personal mobility vehicle by conducting frequency analysis using SAS 9.4. The survey focused on basic information on respondents, walking conditions, understanding of personal mobility vehicle, awareness of pedestrian space passage and parking, and awareness of the possibility of securing pedestrian rights due to new regulations. Results: First, when moving a pedestrian path by personal mobility vehicle, it shall be limited to less than the walking speed of pedestrians. Second, the parking location of the personal mobility vehicle is located at the boundary of the pedestrian road and the lane. Third, pay a fair price to park in a pedestrian space. Conclusions: It is necessary to improve the system to strengthen the contents of education to take into account the safety of pedestrians in education on how to use personal mobility vehicle.

Auditory and Visual Information Effect on the Loudness of Noise (시각 및 청각 정보가 소음의 인지도에 미치는 영향)

  • Shin, Hoon;Park, Sa-Gun;Song, Min-Jeong;Jang, Gil-Soo
    • KIEAE Journal
    • /
    • v.6 no.4
    • /
    • pp.69-76
    • /
    • 2006
  • The effects of the additional visual and auditory stimuli on the loudness evaluation of road traffic noise was investigated by the method of magnitude estimation. As a result, it was shown that additional visual stimulus of noise barrier can influence on the loudness perception of road traffic noise. Also, additional auditory stimuli such as green music or sound of flowing water can influence on the loudness perception of road traffic noise, approximately 5~10% lower than the absence of stimuli. But this effect was disappeared in the range of over 65dB(A).

A Study of Selecting Sequential Viewpoint and Examining the Effectiveness of Omni-directional Angle Image Information in Grasping the Characteristics of Landscape (경관 특성 파악에 있어서의 시퀀스적 시점장 선정과 전방위 화상정보의 유효성 검증에 관한 연구)

  • Kim, Heung Man;Lee, In Hee
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.81-90
    • /
    • 2009
  • Relating to grasping sequential landscape characteristics in consideration of the behavioral characteristics of the subject experiencing visual perception, this study was made on the subject of main walking line section for visitors of three treasures of Buddhist temples. Especially, as a method of obtaining data for grasping sequential visual perception landscape, the researcher employed [momentum sequential viewpoint setup] according to [the interval of pointers arbitrarily] and fisheye-lens-camera photography using the obtained omni-directional angle visual perception information. As a result, in terms of viewpoint selection, factors like approach road form, change in circulation axis, change in the ground surface level, appearance of objects, etc. were verified to make effect, and among these, approach road form and circulation axis change turned out to be the greatest influences. In addition, as a result of reviewing the effectiveness via the subjects, for the sake of qualitative evaluation of landscape components using the VR picture image obtained in the process of acquiring omni-directional angle visual perception information, a positive result over certain values was earned in terms of panoramic vision, scene reproduction, three-dimensional perspective, etc. This convinces us of the possibility to activate the qualitative evaluation of omni-directional angle picture information and the study of landscape through it henceforth.

Radar, Vision, Lidar Fusion-based Environment Sensor Fault Detection Algorithm for Automated Vehicles (레이더, 비전, 라이더 융합 기반 자율주행 환경 인지 센서 고장 진단)

  • Choi, Seungrhi;Jeong, Yonghwan;Lee, Myungsu;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.32-37
    • /
    • 2017
  • For automated vehicles, the integrity and fault tolerance of environment perception sensor have been an important issue. This paper presents radar, vision, lidar(laser radar) fusion-based fault detection algorithm for autonomous vehicles. In this paper, characteristics of each sensor are shown. And the error of states of moving targets estimated by each sensor is analyzed to present the method to detect fault of environment sensors by characteristic of this error. Each estimation of moving targets isperformed by EKF/IMM method. To guarantee the reliability of fault detection algorithm of environment sensor, various driving data in several types of road is analyzed.

Cognitive Model-based Evaluation of Traffic Simulation Model (교통 시뮬레이션 모텔의 인지공학적 평가에 관한 연구)

  • 강명호;차우창
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.163-168
    • /
    • 2002
  • The road sign in dynamic traffic system is an important element which affects on human cognitive performance on driving. Web-based vision system simulator was developed to examine the cognition time of the road sign in dynamic environment. This experiment was designed in within-subject design with two factors; vehicle speed and the amount of information of the traffic sign. It measured the cognition time of the road sign through two evaluation methods; the subjective test with vision system simulator and computational cognitive model. In these two evaluations of human cognitive performance under the dynamic traffic environment, it demonstrated that subject's cognition time was affected by both the amount of information of traffic sign and driving speed.

  • PDF

A Study on Driver Perception-Reaction Time in High-Speed Driving Situations (고속주행상황의 운전자 인지·반응시간에 관한 연구)

  • Choi, Jaisung;Jeong, Seungwon;Kim, Jeongmin;Kim, Taeho;Shin, Joonsoo
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.107-119
    • /
    • 2017
  • PURPOSES : The desire of drivers to increase their driving speeds is increasing in response to the technological advancements in vehicles and roads. Therefore, studies are being conducted to increase the maximum design speed in Korea to 140 km/h. The stopping sight distance (SSD) is an important criterion for acquiring sustained road safety in road design. Moreover, although the perception-reaction time (PRT) is a critical variable in the calculation of the SSD, there are not many current studies on PRT. Prior to increasing the design speed, it is necessary to confirm whether the domestic PRT standard (2.5 s) is applicable to high-speed driving. Thus, in this study, we have investigated the influence of high-speed driving on PRT. METHODS : A driving simulator was used to record the PRT of drivers. A virtual driving map was composed using UC-Win/Road software. Experiments were carried out at speeds of 100, 120, and 140 km/h while assuming the following three driving scenarios according to driver expectation: Expected, Unexpected, and Surprised. Lastly, we analyzed the gaze position of the driver as they drove in the simulated environment using Smarteye. RESULTS : Driving simulator experimental results showed that the PRT of drivers decreased as driving speed increased from 100 km/h to 140 km/h. Furthermore, the gaze position analysis results demonstrated that the decrease in PRT of drivers as the driving speed increased was directly related to their level of concentration. CONCLUSIONS : In the experimental results, 85% of drivers responded within 2.0 s at a driving speed of 140 km/h. Thus, the results obtained here verify that the current domestic standard of 2.5 s can be applied in the highways designated to have 140 km/h maximum speed.