• Title/Summary/Keyword: RoF(radio over fiber)

Search Result 26, Processing Time 0.033 seconds

Study on Applicability of Radio over Fiber system for 5G New Radio Access Technology (5G New Radio Access Technology를 위한 Radio over Fiber 시스템의 수용가능성 연구)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.9
    • /
    • pp.849-854
    • /
    • 2016
  • 5G New Radio Access Technology(: RAT) is studied by many researchers because the current radio frequency is insufficient to accommodate the increased mobile communication data traffic. However, there are few researches to study on the issue whether the wired mobile network can accommodate the new RAT. Therefore, in the paper, the study on the issue whether the Radio over Fiber(: RoF) system can accommodate the new RATs such as millimeter wave communication, terahertz communication, and optical wireless communication. As a result of the study, only millimeter wave communication deserve to be considered in ten years and even RoF system may not support the increased bandwidth of the millimeter wave communication when beamforming is used.

Required Specification Analysis of Radio over Fiber system for LTE-Advanced Fronthaul link (LTE-Advanced 이동통신망 Fronthaul 구간을 위한 Radio over Fiber 시스템의 필요 전송용량 및 요구사항 분석)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.915-919
    • /
    • 2014
  • Since smart phones are widely used globally, the demand for high-speed mobile communications are increasing. To accommodate the increased communication demand, the next-generation mobile communication services such as LTE-Advanced are deployed. In the LTE-Advanced base stations, the base station schemes of Digital Unit (DU) and Radio Unit (RU) are widely used. Here, the link between DU and RU is called fronthaul link. In the current fronthaul link, a digital optical communication interface is used, which is called Common Public Radio Interface (CPRI). However, the CPRI link cannot support the increased mobile traffic efficiently. Therefore, in this paper, we investigate an alternative technology based on the Radio over Fiber (RoF) to accommodate the increased mobile traffic economically.

Nonlinearity Detection and Compensation in Radio over Fiber Systems Using a Monitoring Channel

  • Kim, Sung-Man
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.167-171
    • /
    • 2015
  • A radio over fiber (RoF) system is a kind of analog optical transmission system and considered as a strong candidate for the next-generation fronthaul link in the future mobile network. In RoF systems, nonlinearity compensation is essential to increase the link capacity. In this paper, we propose a nonlinearity detection and compensation scheme using a monitoring channel in RoF systems. A monitoring channel is added at the transmitter site and used for transmitting a reference signal in an RoF transmission. The nonlinearity in the RoF transmission is detected by comparing the received monitoring signal and the original reference signal at the receiver site. Finally, the nonlinearity is compensated at the receiver by giving the reverse function of the detected nonlinearity. Our results show that the proposed scheme can almost remove the error vector magnitude degradation induced by the nonlinearity in the RoF system.

60 GHz analog optic transmitter module for radio-over-fiber link (Radio-over-Fiber 링크를 위한 60 GHz 아날로그 광 송신기 모듈)

  • Jeong, Yong-Deok;Choe, Gwang-Seong;Gang, Yeong-Sik;Sim, Jae-Sik;Kim, Seong-Bok;Kim, Je-Ha
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.363-364
    • /
    • 2006
  • We developed 60 GHz analog optical transmitter modules for radio-over-fiber (RoF). They were consisted of an electroabsorption modulator (EAM), impedance matching circuit, and amplifier. The characteristics of fabricated modules were investigated by measuring the signal-to-noise ratio and the noise figure of the 60 GHz RoF link.

  • PDF

Nonlinear Compensation Using Artificial Neural Network in Radio-over-Fiber System

  • Najarro, Andres Caceres;Kim, Sung-Man
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In radio-over-fiber (RoF) systems, nonlinear compensation is very important to meet the error vector magnitude (EVM) requirement of the mobile network standards. In this study, a nonlinear compensation technique based on an artificial neural network (ANN) is proposed for RoF systems. This technique is based on a backpropagation neural network (BPNN) with one hidden layer and three neuron units in this study. The BPNN obtains the inverse response of the system to compensate for nonlinearities. The EVM of the signal is measured by changing the number of neurons and the hidden layers in a RoF system modeled by a measured data. Based on our simulation results, it is concluded that one hidden layer and three neuron units are adequate for the RoF system. Our results showed that the EVMs were improved from 4.027% to 2.605% by using the proposed ANN compensator.

Study on direct optical switching CDM at 40 GHz-band for Radio-over-Fiber(RoF) system (Radio-over-Fiber 시스템을 위한 40 GHz 대역에서 직접 광스위칭 CDMA 연구)

  • 최재원;전영민;변영태;우덕하;박종대;서동선
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.600-605
    • /
    • 2003
  • We have experimentally demonstrated a Direct Optical Switching (DOS) CDMA for future wide-band mobile communication systems at the 40 ㎓ band by using orthogonal (crosscorrelation $\leq$2) unipolar type codes with code length of 16 and chip rate of 2.5 Gcps for radio-over-fiber (RoF) systems. Pulse-amplitude-equalized 40 ㎓ laser pulses were provided by rational-harmonically mode-locking a 10 ㎓ fiber ring laser.

Interchannel RF Power Fluctuation in WDM-RoF System Employing Photonic Crystal Fiber (광결정 광섬유를 이용한 WDM-RoF 시스템의 채널간 전력변화 편차 분석)

  • Kim, So-Eun;Lee, Chung-Ghiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.821-828
    • /
    • 2012
  • In this paper, we report that the differences between RF power levels can be improved in wavelength division multiplexing - radio over fiber (WDM-RoF) system by using a photonic crystal fiber. In a WDM-RoF system, each WDM channel experiences different received RF power level fluctuation in remote node (RN) because of wavelength-dependent dispersion. Since each WDM channel experiences different power fluctuation, the RF power fluctuation acts as a design constraint in viewpoint of network design. We designed a photonic crystal fiber to improve the effect of wavelength- dependent dispersion on RF power fluctuation. Also, we analyzed the wavelength-dependent difference of inter-channel RF power fluctuations.

60GHz Band RoF Transport Distribution System for CATV Application (CATV 용 60GHz 대 RoF 분배시스템)

  • Park Jong-Dae;Chang Sun-Hyok;Chung Hwan-Seok;Chu Moo-Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.158-164
    • /
    • 2006
  • Mobile operators will face many challenges both economically and technically, as WLAN evolve through a bewildering number of different standards during the coming years. Potentially this will require several upgrades to the mobile infrastructure. A new approach for addressing these challenges is evaluated in this paper. It is based on a radio over fiber (RoF) technology that uses electro-absorption modulator (EAM) and optical single sideband (OSSB) modulation technique and it promises to provide solutions that will be transparent to changes in protocols and frequency of operation as well as reducing radio access infrastructure costs. This paper describes the development of prototype RoF system based on the 60GHz band CATV transport distribution system with EAM and the possibility of radio over fiber technology for use in the broadband convergence network (BcN) wireless access infrastructure.

Generalized Analysis on the Combined Effect of SPM and Fiber Chromatic Dispersion on Subcarrier Multiplexed Optical Transmission Systems for RoF Applications

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • We investigate theoretically the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) on multi-channel subcarrier multiplexed (SCM) optical transmission systems in terms of the detected RF carrier power and SPM-induced power gain after transmission over single-mode fiber (SMF) links. According to the calculated power gain due to the SPM effect at the transmission distance of P3dB using the detected radio-frequency (RF) carrier power after photo-detection, the power gain is significantly degraded with large optical modulation index (OMI), small SCM channel spacing, and large fiber launching power because of the increased interaction between subcarrier channels. The nonlinear phase shift due to linear and nonlinear fiber characteristics is investigated to explain these results in detail. The numerical simulation results show that the OMI per SCM channel has to be smaller than 10 % for the fiber launching power of 10 dBm to guarantee prevention of SPM-induced power gain degradation below 0.5 dB for the SCM system with the channel spacing of 100 MHz. This result is expected to be utilized for the optical transmission systems using the SCM technology in future radio-over-fiber (RoF) networks.

Predistortion for Frequency-Dependent Nonlinearity of a Laser in RoF Systems

  • Najarro, Andres C.;Kim, Sung-Man
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.147-152
    • /
    • 2016
  • In radio-over-fiber (RoF) systems, nonlinear compensation is essential to improve performance. Among the several existing nonlinear compensation techniques, we investigate a predistortion technique for a directly modulated laser in an RoF system. First, we obtain the input-to-output response of a directly modulated laser at 160, 820, and 1,540 MHz. The results show that the laser response is dependent on the frequency band. Second, we design an optimal predistortion circuit to compensate for the nonlinear responses of three frequency bands. We design the predistortion circuit with two options: each predistortion circuit for each frequency band and one single predistortion circuit for all the three frequency bands. Finally, we present the simulation results of the predistortion system obtained using a commercial simulator. These results show that the third intermodulation distortion (IMD3) is improved by 0.6-9 dB for the three frequency bands with only a single predistortion circuit.