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Abstract

In radio-over-fiber (RoF) systems, nonlinear compensation is very important to meet the error vector magnitude (EVM)

requirement of the mobile network standards. In this study, a nonlinear compensation technique based on an artificial neural

network (ANN) is proposed for RoF systems. This technique is based on a backpropagation neural network (BPNN) with one

hidden layer and three neuron units in this study. The BPNN obtains the inverse response of the system to compensate for

nonlinearities. The EVM of the signal is measured by changing the number of neurons and the hidden layers in a RoF system

modeled by a measured data. Based on our simulation results, it is concluded that one hidden layer and three neuron units are

adequate for the RoF system. Our results showed that the EVMs were improved from 4.027% to 2.605% by using the proposed

ANN compensator. 

Index Terms: Artificial neural network, Nonlinear compensation, Radio over fiber

I. INTRODUCTION

Artificial neural networks (ANNs) are now being used in

telecommunications. Proposals have been made to employ

neural networks (NNs) as neural de-multiplexers [1] or

equalizers in optical communications [2]. In this study, we

use an ANN for nonlinear compensation in a radio-over-fiber

(RoF) system.

RoF technology is considered a strong candidate for a

future front-haul link in mobile networks [3, 4]. The front-

haul link is the component of a mobile network between the

central digital units and remote units. Although the common

public radio interface (CPRI) or open base station architec-

ture initiative (OBSAI) is currently used as the fronthaul

link, these technologies cannot support the capacity of future

mobile networks [5]. For example, an approximately 120

Gb/s CPRI interface is required to support a remote unit

composed of three sectors with two 20-MHz radio channel

bandwidths and an 8×8 multiple-input multiple-output

(MIMO) scheme. Moreover, to support the massive MIMO

scheme proposed in 5G mobile technologies, neither CPRI

nor OBSAI is a reasonable solution because several Tb/s

links would be required for a remote unit.

RoF technology has thus been proposed to efficiently sup-

port increased network capacity [6]. In RoF systems, several

analog radio signals are multiplexed using frequency divi-

sion multiplexing (FDM) and transmitted as an analog opti-

cal transmission. Therefore, the signal quality of RoF

systems can be easily degraded by nonlinearity, which usu-

ally limits their performance and makes it difficult to meet

the error vector magnitude (EVM) requirement of mobile

communication standards. Consequently, nonlinear compen-

sation is important in RoF systems [7, 8]. In this study, we

investigate the use of ANN technology to compensate the
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nonlinearity in RoF systems. 

II. ARTIFICIAL NEURAL NETWORK 

COMPENSATOR

An ANN is a mathematical model of a biological neuron.

The simplest NN is called a perceptron and is illustrated in

Fig. 1. The dendrites receive stimuli (input), the cell body

processes the stimuli (activation function), and the axon

finally transmits the information (output). The perceptron

has only two layers: input and output. The input layer

receives information; the output layer modifies it according

to input weights, biases, and the activation function. The

mathematical model of a perceptron is shown in Eq. (1). 

, (1)

where xi, wi and bi denote NN inputs, weights, and bias,

respectively. This single-layer perceptron cannot be used to

solve complex problems. A multilayer perceptron (MLP), in

contrast to a single-layer perceptron, has more than two lay-

ers and can solve complex problems. The layers between the

input and output layers are called hidden layers. With just

one hidden layer, the MLP can be a powerful computation

tool [9].

The MLP weights are generally initialized using a back-

propagation algorithm. Backpropagation is similar to a least

minimum squares algorithm and requires finding the mini-

mum error function to initialize NN weights (a learning pro-

cess). This algorithm uses gradient descent to search for the

minimum error function in the weight space. The error equa-

tion is obtained from the difference of the NN output and the

desired output, as shown in Eq. (2). The weight update is

carried out in different epochs according to Eq. (3).

, (2)

 

. (3)

The activation function can be chosen independently of

the neuron location (i.e., layer). However, as the backpropa-

gation algorithm uses the gradient descent, the activation

function plays the important role of guaranteeing the conti-

nuity and differentiability of the error function. Hence, it is

necessary to use mathematically convenient activation func-

tions, the most popular of which is the sigmoid function [10,

11].

ANN weights represent the connection values between the

input and hidden, hidden and hidden, and hidden and output

layers. As previously mentioned, the weight update is carried

out by the backpropagation algorithm, which works in two

steps. First, it calculates forward information, the layer out-

puts, as shown in Eq. (4). Second, it conducts the gradient

descent using the output information, as shown in Eq. (5)

[12].

, (4)

. (5)

The value of each weight changes from layer to layer and

is represented by wl
ij, where l represents the layer’s index and

can take values from 1 ≤ l ≤ L. Here, L is the index of the

NN output layer; i and j represent the input and output indi-

ces and can take values from 0 ≤ i ≤ n(l-1) and 1 ≤ j ≤ n(l),

respectively; and n represents the number of neuron units per

layer.

Applying the chain rule in Eq. (5), we can obtain the fol-

lowing equation:

. (6)

From the second term in Eq. (6), the partial derivative of

the layer’s output with respect to the weight is a known

value, the input of layer (xi
(l-1)). The unique unknown term is

the partial derivative of the error with respect to the layer’s

output, as shown in Eq. (7).

. (7)
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Fig. 1. The neural network: (a) biological neuron and (b) its computational

model.
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To calculate δ for all layers, it is necessary to find δ in the

last layer when l = L because calculating the last δ enables

the determination of previous ones. In the last layer, δ is

obtained by simply forwarding the information from the

input to the output. The main difficulty is to obtain δ in the

previous layers. However, if the chain rule is applied, a new

and easier relation can be found, as shown in Eq. (8).

. (8)

The operation must be performed for all the layer units.

Thus, Eq. (8) acquires a new form, which is shown in Eq.

(9).

, (9)

Calculating the partial derivatives, we clearly obtain the

relation between the last and previous δ, as shown in Eq.

(10).

. (10)

This equation explicitly demonstrates that information

propagates in the backward direction to calculate the previ-

ous δ, hence the name ‘backpropagation.’

The nonlinear compensator is a feed-forward NN, as

shown in Fig. 2, which uses a backpropagation algorithm for

initializing neural weights. In this unidirectional NN, the

activation function can be any differentiable function, such

as a log-sigmoid transfer function, a linear transfer function,

or a tan-sigmoid transfer function. The activation function

can be chosen independently of the neuron location. In this

work, we created a neural compensator with a tan-sigmoid

transfer function (f1(x)) in the hidden layer and a linear

transfer function (f2(x)) in the output layer. The output of this

NN can be mathematically represented as in Eq. (11).

, (11)

where

I = Input,

IW = Input weights,

HW = Hidden layer weights,

b1, b2 = Bias,

f1 = Tan-sigmoid transfer function,

f2 = Linear transfer function.

Backpropagation training can use various optimization

algorithms, such as Levenberg–Marquardt optimization,

quasi-Newton backpropagation, or gradient descent. In this

work, we use Levenberg–Marquardt optimization to update

weights and bias states. This algorithm is faster in reaching

the minimum error than others; however, it requires more

memory [13].

III. RESULTS AND DISCUSSION

Fig. 3 illustrates the simulation setup for an ANN compen-

sator in a RoF system. An orthogonal FDM (OFDM) signal

is assumed to be the radio signal. The ANN training process

is performed offline. Each time the system’s physical struc-

ture or transmission configuration varies, the ANN compen-

sator should be trained again and new weights must be

determined. During training, the target is obtained from the

transmitter block and the input is obtained from the receiver

photodiode.

We assumed that the radio signal was an OFDM signal

with 64 carriers, 16-quadrature amplitude modulation (QAM),

and a central frequency of 2.2 GHz. To emulate laser nonlin-

earity, we measured the nonlinear response of the laser and

inserted this nonlinear function as the distortion block, as

shown in Fig. 3.
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Fig. 2. Structure of an ANN. Fig. 3. Simulation setup for the ANN compensator in the RoF system.
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We investigated the optimal number of neurons in the hid-

den layer by measuring the radio signal EVM resulting from

networks having between one and ten units, as shown in

Table 1. From these results, we concluded that three neural

units were sufficient for this system. This is because more

neural units did not improve EVM, while it required more

processing power. We additionally investigated the effect of

hidden layers in an ANN compensator. We changed the num-

ber of hidden layers from one to three. However, no consid-

erable change in EVM values was observed. Thus, we

concluded that one hidden layer was adequate for this ANN

compensator.

Therefore, we used an ANN compensator with one hidden

layer comprising three neural units for the RoF system. In

the ANN training process, the ANN finds the minimum

mean squared error value. We hence determined that our

ANN achieved the minimum value, 0.025153, after just eight

epochs. The required time for the training process was

approximately 70 seconds.

To investigate the performance of our ANN compensator,

we measured the EVM of the received signal with and with-

out it. The results are shown in Table 2. The EVM of the

signal is improved from 4.027% to 2.605%, as illustrated in

Fig. 4. In Fig. 4, the square points are the ideal QAM points

and the circular points are the received points. Signal con-

stellation without the ANN compensator in Fig. 4(a) shows

relatively large EVM, whereas the constellation with the

ANN compensator in Fig. 4(b) shows relatively small EVM.

For example, it can be noticed that the EVM of the mark in

Fig. 4(a) was reduced to the mark in Fig. 4(b).

IV. CONCLUSION

In this work, we proposed an ANN nonlinear compensator

for RoF systems. The ANN compensator is a feed-forward

supervised NN with three neuron units in one hidden layer

whose weights are determined by a backpropagation algo-

rithm. Our results showed that the EVM improved by more

than 35% (from 4.027% to 2.605%) by using the proposed

ANN compensator. This work is only an initial step toward

using an ANN compensator in a RoF system. Nonetheless,

we believe that ANN compensators can be widely used for

nonlinear compensation in optical fiber communications.
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Table 1. EVM results according to number of hidden layer neural units 

Number of 

neuron units

Mean squared error 

(ETrain)
EVM (%)

1 0.024997 3.648

2 0.024877 2.796

3 0.025153 2.605

4 0.025153 2.758

5 0.025132 2.728

10 0.024816 2.669

Table 2. System EVM with and without the ANN compensator

Case EVM (%)

System with ANN compensator 2.605

System without ANN compensator 4.027

Fig. 4. Signal constellation (a) without and (b) with the ANN compensator.

EVM of the signal is improved from (a) 4.027% to (b) 2.605%.
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