• Title/Summary/Keyword: River2D model

Search Result 264, Processing Time 0.03 seconds

Development of a Flood Runoff and Inundation Analysis System Associated With 2-D Rainfall Data Generated Using Radar III. 2-D Flood Inundation Simulation (레이더 정량강우와 연계한 홍수유출 및 범람해석 시스템 확립 III. 2차원 홍수범람 모의)

  • Choi, Kyu-Hyun;Han, Kun-Yeun;Kim, Sang-Ho;Lee, Chang-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.347-362
    • /
    • 2006
  • In this study, a 2-D flood inundation model was developed to evaluate the impact of levee failure in a natural basin for flood analysis. The model was applied to analyze the inundation flow from the levee break of Gamcheon river during the typhoon Rusa on October 31 through September 1, 2002. To verify the simulated results, wide range field surveys have been performed including the collection of NGIS database, land use condition, flooded area, and flow depths. Velocity distributions and inundation depths were presented to demonstrate the robustness of the model. Model results have good agreements with the observed data in terms of flood level and flooded area. The model is able to compute maximum stage and peak discharge efficiently in channel and protected lowland. Methodology considering radar-rainfall estimation using cokriging scheme, flood-runoff and inundation analysis in this study will contribute to the establishment of the national integrated flood disaster prevention system and the river or protect lowland management system.

A Study of the Conveyance Increasement for Urban River using 1, 2-Dimensional Numerical Model (1, 2차원 수치모형에 의한 도시하천의 통수능 확보 방안에 관한 연구)

  • Baek, Chun-Woo;Park, Moo-Jong;Kim, Seok-Woo;Jo, Deok-Jun;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.73-82
    • /
    • 2005
  • The scheme for the conveyance increasement of urban river is presented in this study. For the use of the lower part of the road paralleled to urban river as a conveyance, the 2-dimensional flood flow between main channel and added conveyance section is analyzed by mathematical model SMS(2-D simulation model). The result of the HEC-RAS(1-D simulation model) is used to calibrate the parameters of SMS. New scheme is applied to the Cheonggeyecheon Restoration Project. The capacity of flood flow between main channel and added conveyance is simulated for 50, 80, 200 year frequency flood and suitable size of pathway is proposed.

Numerical Model Application for Analysis of Flood Level Mitigation due to Retention-Basin (강변저류지 홍수위 저감효과 분석을 위한 수치모형 적용)

  • Cho, Gilje;Rhee, Dong Sop;Kim, Hyung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.495-505
    • /
    • 2014
  • The retention basin is a river-facility for the flood mitigation by storing the river flow temporarily. The new 3 retention basins are installed in these regions YeoJu, NaJu, YoungWol by the Large River Management Project. In this study, 1D and 2D numerical flow simulation are conducted to evaluate the reduction effect of the peak flood stage for the YeoJu retention basin. HEC-RAS and FLDWAV models are used for 1D simulation with the option of retention basin. CCHE2D model is used for 2D simulation with the same hydrograph used in 1D simulation. It is verified that the peak flood stage is reduced very largely about 0.13 m near the overtopping section of the levee in 1D simulation. It is verified that the peak flood stage is reduced very largely about 0.20 m at the upstream-end of the simulated reach in 2D simulation. 2D simulation for the retention basin is more reasonable because physical characteristics of topography in the model, and also more advantageous for the evaluation of the flow characteristics of the in- and outside of the retention basin on the results of simulation of this study.

Estimation of Optimum Flow for Fish Habitat for Major Tributaries in Gurm River Basin Using Two Dimensional Physical Habitat Simulation (2차원 물리서식처 모의를 이용한 금강수계 주요 지류에서의 어류서식처 최적유량 산정)

  • Oh, Kuk-Ryul;Jeong, Sang-Man;Lee, Joo-Heon;Seo, Hyung-Deok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.691-694
    • /
    • 2008
  • The results of research, which proposes the optimum flow considering the habitation environment of fishes in determining the instream flow, have been drawn by many researchers in Korea. In this study, the relations of weighted usable area to discharge are researched. In addition, River2D, which is the simulation model of 2D physical habitats, is applied to the main tributaries of the Geum River basin on the instream flow incremental methodology proposed in the U.S. in order to calculate optimum flow in each growth step of fish, which are the dominant species living in the river, considering the habitat of fishes in streams.

  • PDF

Application of Integrated Modelling Framework Consisted of Delft3D and HABITAT for Habitat Suitability Assessment (생물서식지 적합성 평가를 위한 Delft3D와 HABITAT 모델의 연계 적용)

  • Lim, Hyejung;Na, Eun Hye;Jeon, Hyeong Cheol;Song, Hojin;Yoo, Hojun;Hwang, Soon Hong;Ryu, Hui-Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.217-228
    • /
    • 2021
  • This paper discusses a methodology where an integrated modelling framework is used to quantify the risk derived from anthropic activities on habitats and species. To achieve this purpose, a tool comprising the Delft3D and HABITAT model, was applied in the Yeongsan river. Delft3D effectively simulated the operational condition and flow of weirs in river. In accuracy evaluation of the Delft3D-FLOW, the Bias, Pbias, Mean Absolute Error (MAE), Nash-Sutcliffe Efficiency (NSE), and Index of Agreement (IOA) were used, and the result was evaluated as grade above 'Satisfactory'. The HABITAT calculated Habitat Suitability Value (HSV) for the following eight species: mammal, fish, aquatic plant, and benthic macroinvertebrate. An Area was defined as a suitable habitat if the HSV was larger than 0.5. HABITAT was judged accurately by measuring the Correct Classification rate (CCR) and the area under the ROC curve (AUC). For benthic macroinvertebrate, the CCR and AUC were 77% and 0.834, respectively, at thresholds of 0.017 and 4 inds/m2 for HSV and individuals per unit area. This meant that the HABITAT model accurately predicted the appearance of the benthic macroinvertebrates by approximately 77% and that the probability of false alarms was also very low. As a result of evaluating the suitability of habitats, in the Yeongsan river, if the annual "lowest level" (Seungchon weir: 2.5 EL.m/ Juksan weir: -1.35 EL.m) was maintained, the average habitat improvement effect of 6.5%P compared to the 'reference' scenario was predicted. Consequently, it was demonstrated that the integrated modelling framework for habitat suitability assessment is able to support the remedy aquatic ecological management.

Utilizing Concept of Vegetation Freeboard Equivalence in River Restoration

  • Lee, Jong-Seok;Julien, Pierre Y.
    • International Journal of Contents
    • /
    • v.8 no.3
    • /
    • pp.34-41
    • /
    • 2012
  • The concept of vegetation freeboard equivalence (VFE) is presented from the comparison between the rise in stage with/without vegetation and the freeboard height under design discharge conditions. In South Korea, the freeboard height of large, medium and small rivers is defined as a function of river discharge. Two models are used for this analysis of flood stage with and without vegetation: the 1-D model HEC-RAS and the 2-D model RMA-2. Both models are applied to three river study sites of the Geum River in South Korea as representative sites for a large, a medium and a small river. The analysis shows that without vegetation, both models provide comparable results and the calculated results are in very good agreement with the design configuration. The vegetation effects on the medium river are less significant, and the freeboard is adequate to contain the rise in stage from the added floodplain vegetation in large rivers. The concept of vegetation freeboard equivalence is therefore useful for the analysis of flood river stages after the restoration of channels with increased floodplain vegetation.

Analysis of Fishway Location change and Fishway Efficiency Using River2D Model (River2D 모형을 이용한 어도 위치 수정 및 어도 이용효율 분석)

  • Lee, Jeong Min;Ku, Young Hun;Baek, Kyong Oh;Kim, Young Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.64-64
    • /
    • 2017
  • 본 연구에서는 낙동강에 위치한 강정고령보에 설치된 자연형 어도의 유인효율 증대를 위한 어도의 위치 수정 제시를 하였다. 평면 2차원 물리서식처 모형인 River2D 모형을 통해 강정고령보의 자연형어도 입구부의 유속장과 WUA(Weighted Usable Area)를 이용하여 유인효율을 분석 실시하였다. 유인효율 분석 결과 자료와 2013년도 어류모니터링 자료를 통해 WUA는 어류 유인효율 평가하는 지수로 사용 될 수 있는 것을 간접적으로 검증하였다. 어류의 소상에는 유속이 중요한 인자로 작용한다. 모의를 통한 강정고령보의 유속장을 확인해보면 자연형어도가 설치된 좌안과는 반대로 우안쪽으로 형성되는 것을 확인하였다. 어도의 모양 및 위치를 수정한 지형자료를 이용하여 River2D 모형모의를 통한 어도의 유인효율을 증대 시킬 수 있는 방법을 제시하였다. 유속장이 주로 발생하는 보 우안쪽에 설치하는 것이 유인효율을 최대로 끌어낼 수 있었지만 비용적인 부분과 유인효율을 같이 생각한다면 현재 설치된 좌안 자연형어도의 입구부를 상류쪽으로 위치하여 재설치하는 것이 어류의 유인효율을 증대시켜주는 효과적인 제시방안이 되리라 사료 된다.

  • PDF

Assessment for Characteristics of Flow According to Installing Hydraulic Structures by 2-D Numerical Model (2차원 수치모형을 이용한 수공구조물 설치에 따른 수리학적 흐름 영향 평가)

  • Choi, Seung Yong;Nam, Ki Young;Han, Kun Yeun
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.797-813
    • /
    • 2011
  • Frequently occurring flood and drought due to abnormal climate and global warming have increased the necessity of an effective water resources control and management of river flows. The various hydraulic structures are constructed in river as part of an effective water resources management. It is very important to analyse characteristics of flow according to installing hydraulic structures in this situations. The objective of this study is to investigate the hydraulic behaviors of flow considering affections of hydraulic structures using 2-D numerical model. To do this, both RMA-2 model and developed RAM2 model are used to analyse flow phenomena before and after installation of hydraulic structures in Nakdong river. As a result of, the water surface elevation at upstream regions increased about 22cm~66cm and the velocity around the structures sharply increased after installation of structures. The measures for the rise of water surface at upstream and local scour due to high velocity around the structures must be established when the structures is constructed.

Flood risk estimation with scenario-based, coupled river-overland hydrodynamic modeling (시나리오 기반 하천-제내지 연계 통합수리해석에 의한 홍수위험도 산정)

  • Lee, Jae Young;Nam, Myeong Jun;Kwon, Hyun Han;Kim, Ki Young
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.773-787
    • /
    • 2016
  • A coupled river-overland hydrodynamic model was applied to estimate flood risk by a scenario-based approach. The study area is Seongseo Industrial Complex in Daegu which is located near Nakdong river and Geumho river. Inundation depth and velocity at each time were calculated by applying a coupled 1D/2D hydrodynamic model to the target area of interest. The 2D inundation analysis for river and overland domain was performed with the scenario-based approach that there are levee overflow against 100/200 year high quantile (97.5%) design flood and levee break against 100/200 year normal quantile (50%) design flood. The level of flood risk was displayed for resident/industrial area using information about maximum depth and velocity of each node computed from the 2D inundation map. The research outcome would be very useful in establishing specified emergency action plans (EAP) in case of levee break and overflowing resulting from a flood.

A Case Study of the Aquatic Habitat Changes due to Weir Gate Operation (보 수문 운영에 따른 수생 서식처 변화 연구)

  • Choi, Byungwoong;Lee, Namjoo
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.300-307
    • /
    • 2020
  • This study was conducted to evaluate the impact of weir gate operation in aquatic fish habitats through a physical habitat simulation of Geum River, Korea. The target species was Zacco platypus, which is a dominant species in the study area. The River2D model was used to compute the flow, and the habitat suitability index model was used to estimate the quality and quantity of the habitat using a habitat suitability curve. An unopened case and a partially opened case were investigated to assess the impact of weir gate operation on the aquatic fish habitat. The simulation results showed that the aquatic habitats of the target species in the partially opened case improved significantly, compared to the case without a gate opening. Furthermore, the weighted usable area increased by a factor of approximately 13, owing to weir gate operation in the study area.