DOI QR코드

DOI QR Code

Application of Integrated Modelling Framework Consisted of Delft3D and HABITAT for Habitat Suitability Assessment

생물서식지 적합성 평가를 위한 Delft3D와 HABITAT 모델의 연계 적용

  • Lim, Hyejung (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Na, Eun Hye (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Jeon, Hyeong Cheol (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Song, Hojin (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Yoo, Hojun (GeoSystem Research Cooperation) ;
  • Hwang, Soon Hong (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Ryu, Hui-Seong (Yeongsan River Environment Research Center, National Institute of Environmental Research)
  • 임혜정 (국립환경과학원 영산강물환경연구소) ;
  • 나은혜 (국립환경과학원 영산강물환경연구소) ;
  • 전형철 (국립환경과학원 영산강물환경연구소) ;
  • 송호진 (국립환경과학원 영산강물환경연구소) ;
  • 유호준 (지오시스템리서치) ;
  • 황순홍 (국립환경과학원 영산강물환경연구소) ;
  • 류희성 (국립환경과학원 영산강물환경연구소)
  • Received : 2020.11.12
  • Accepted : 2021.05.11
  • Published : 2021.05.30

Abstract

This paper discusses a methodology where an integrated modelling framework is used to quantify the risk derived from anthropic activities on habitats and species. To achieve this purpose, a tool comprising the Delft3D and HABITAT model, was applied in the Yeongsan river. Delft3D effectively simulated the operational condition and flow of weirs in river. In accuracy evaluation of the Delft3D-FLOW, the Bias, Pbias, Mean Absolute Error (MAE), Nash-Sutcliffe Efficiency (NSE), and Index of Agreement (IOA) were used, and the result was evaluated as grade above 'Satisfactory'. The HABITAT calculated Habitat Suitability Value (HSV) for the following eight species: mammal, fish, aquatic plant, and benthic macroinvertebrate. An Area was defined as a suitable habitat if the HSV was larger than 0.5. HABITAT was judged accurately by measuring the Correct Classification rate (CCR) and the area under the ROC curve (AUC). For benthic macroinvertebrate, the CCR and AUC were 77% and 0.834, respectively, at thresholds of 0.017 and 4 inds/m2 for HSV and individuals per unit area. This meant that the HABITAT model accurately predicted the appearance of the benthic macroinvertebrates by approximately 77% and that the probability of false alarms was also very low. As a result of evaluating the suitability of habitats, in the Yeongsan river, if the annual "lowest level" (Seungchon weir: 2.5 EL.m/ Juksan weir: -1.35 EL.m) was maintained, the average habitat improvement effect of 6.5%P compared to the 'reference' scenario was predicted. Consequently, it was demonstrated that the integrated modelling framework for habitat suitability assessment is able to support the remedy aquatic ecological management.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립환경과학원의 지원을 받아 수행하였습니다(NIER-2020-01-01-031).

References

  1. Chanudet, V., Fabre, V., and van der Kaaij, T. (2012). Application of a three-dimensional hydrodynamic model to the Nam Theun 2 reservoir (Lao PDR), Journal of Great Lakes Research, 38(2), 260-269. https://doi.org/10.1016/j.jglr.2012.01.008
  2. Dikker, T. (1974). Een plantkundige beschrijving, de levenswijze en de eisen, die het riet stelt ten aanzien van zijn omgeving, Tech. rep. Rijksdienst voor de IJsselmeerpolders, Lelystad. [Dutch Literature]
  3. Duel, H. and Specken, B. (1994a). Standplaatsmodel Driekantige Bies: een model voor het analyseren van de standplaatskwaliteit van zoetwatergetijdegebieden voor de driekantige bies (Scirpus triqueter). INRO-TNO, Afdeling Planning, Delft. maart [Dutch Literature]
  4. Duel, H. and Specken, B. (1994b). Standplaatsmodel Schedefonteinkruid: een model voor het analyseren van de standplaatskwaliteit van wateren voor vegetaties met schedefonteinkruid (Potamogeton pectinatus). INRO-TNO, Afdeling Planning, Delft, februari. [Dutch Literature]
  5. Ha, J. U. (2015). Distribution and habitat use of eurasian otter (Lutra lutra) in Yeongsan river, Korea, Master's Thesis, Incheon University, Incheon, Korea, 83. [Korean Literature]
  6. Haasnoot, M. and van de Wolfshaar, K. E. (2007). Habitat analyse in het kader van de Planstudie/MER voor Krammer, Volkerak en Zoommeer, WL report, Q4015. [Dutch Literature]
  7. Haasnoot, M. and van de Woolfshaar, K. E. (2008). Combing a conceptual framework and a spatial analysis tool, HABITAT, to support the implementation of river basin mangement plans, International Journal of River Basin Management, 6(4), 1-17.
  8. Haasnoot, M., Kranenbarg, J. and van Buren, R. (2005). Seizoensgebonden peilen in het IJsselmeergebied. Verkenning naar optimalisatie van het peil voor natuur binnen de randvoorwaarden van veiligheid, scheepvaart en watervoorziening. WL rapport, Q3889. [Dutch Literature]
  9. Han River Flood Control Office(HRFCO). (2020). WAter resources Management Information System (WAMIS), http://www.wamis.go.kr (accessed Mar. 2020).
  10. Huang, W. and Mynnet, A. (2010). Effects of changes in Lugu lake water quality on Schizothorax yunnansis ecological habitat based on HABITAT model, Security Technology, Disaster Recovery and Business Continuity, 259-268.
  11. Hur, J. W. and Seo, J. W. (2011). Investigation on physical habitat condition of Korean Chub (Zacco koreanus) in typical streams of the Han river, Journal of Environmental Impact Assessment, 20(2), 206-214. [Korean Literature]
  12. Hur, J. W., In, D. S., Jang, M. H., Kang, H. S., and Kang, K. H. (2011). Assessment of inhabitation and species diversity of fish to substrate size in the Geum river basin, Journal of Environmental Impact Assessment, 20(6), 845-856. [Korean Literature] https://doi.org/10.14249/EIA.2011.20.6.845
  13. Kacikoc, M. and Beyhan, M. (2014). Hydrodynamic and water quality modeling of lake Egirdir, CLEAN-Soil, Air, Water, 42(11), 1573-1582. https://doi.org/10.1002/clen.201300455
  14. Kalff, J. (2002). Limnology: Inland water ecosystem, Prentice-Hall, Upper Saddle River, New Jersey, 451-477.
  15. Kang, H. S. (2012). Comparision of physical habitat suitability index for fishes in the rivers of Han and Geum river watersheds, Korean Society of Civil Engeneers, 32(1), 71-78. [Korean Literature]
  16. Kim, Y. J. and Kong, D. S. (2018). Estimation on physical habitat suitability of benthic macroinvertebrates in the Hwayang stream, Journal of Korean Society on Water Environment, 34(1), 10-25. [Korean Literature] https://doi.org/10.15681/KSWE.2017.34.1.10
  17. Knack, I., Huang, F., and Shen, H. T. (2020). Modeling fish habitat condition in ice affected river, Cold Regions Science and Technology, 176, 103086. https://doi.org/10.1016/j.coldregions.2020.103086
  18. Kong, D. S. and Kim, A. R. (2017). Estimation on the physical habitat suitability of benthic macroinvertebrates in the Gapyeong stream, Journal of Korean Society on Water Environment, 33(3), 311-325. [Korean Literature] https://doi.org/10.15681/KSWE.2017.33.3.311
  19. Korea Institute of Civil Engineering and Building Technology (KICT). (2015). Monitoring and evaluation of river change (River channel changes), Han River Flood Control Office, 718. [Korean Literature]
  20. Kruuk, H., Conroy, J. W. H., and Moorhouse, A. (1992). Seasonal reproduction, mortality and food of otter (Lutra lutra) in Shetland, Zoological Symposium, 58, 263-278.
  21. Lee, W. H. and Choi, H. S. (2016). Physical disturbance improvement evaluation and habitat suitability analysis by stable channel design, Ecology and Resilient Infrastructure, 3, 285-293. https://doi.org/10.17820/eri.2016.3.4.285
  22. Lee, W. O. and No, S. Y. (2006). Korean peninsula freshwater fish seen as a characteristic, Jisungsa, Seoul, 432. [Korean Literature]
  23. Los, F. J., Villars, M. T., and van der Tol, M. W. M. (2008). A 3-dimensional primaty production model (BLOOM/GEM) and its applications to the (southern) North sea (coupled physical-chemical-ecological model), Journal of Marine System, 74, 259-294. https://doi.org/10.1016/j.jmarsys.2008.01.002
  24. Maas, G. J. (1998). Benedenrivier-Ecotopen-Stelsel, Tech. rep. Rijkswaterstaat RIZA, Arnhem. [Dutch Literature]
  25. Miao, Y., Li, J., Feng, P., Dong, L., Zhang, T., Wu, J., and Katwal, R. (2020). Effects of land use changes on the ecological operation of Panjiakou-Daheiting reservoir system, China, Ecological Engineering, 152, 105851. https://doi.org/10.1016/j.ecoleng.2020.105851
  26. Ministry of Environment (ME). (2018). The basic plan for national water environment management, Ministry of Environment, Sejong, Korea. [Korean Literature]
  27. Ministry of Environment/National Institute of Environmental Research, (ME/NIER). (2008-2018). Stream/river ecosystem survey and health assessment (I-XI), Ministry of Environment/National Institute of Environmental Research, Incheon, Korea. [Korean Literature]
  28. Ministry of Environmnet (ME). (2020). Water Environment Information System (WEIS), http://weis.nier.go.kr (accessed Mar. 2020).
  29. Moriasi, D. N., Arnold, J. G., van Liew, M. W., Bingner, R. L., Haemel, R. D., and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, American Society of Agricultural and Biological Engineers, 50(3), 885-900.
  30. National Institute of Environmental Research (NIER). (2018). Aquatic ecosystem monitoring in weirs of the Yeongsan river (9th report), National Institute of Environmental Research, Incheon, Korea. [Korean Literature]
  31. Park, J. H., Lee, J. S., Shim, H. S., Lee, H. G., Hwang, G. S., Kim, D. S., and Hur, W. M. (2013). Benthic macroinvertebrates: Arthropod, Aquatic ecology restoration project team, 262. [Korean Literature]
  32. Piragnolo, M., Pirotti, F., Guarnieri, A., Vettore, A., and Salogni, G. (2014). Geo-spatial support for assessment of anthropic impact on biodiversity, International Journal of Geo-Infromation, 3, 599-618.
  33. Raapysjarvi, J., Hamalainen, H., and Aroviita, J. (2016). Macrophytes in boreal stream: Characterizing and predicting native occurrence and abundance to assess human impact, Ecological Indicators, 64, 309-318. https://doi.org/10.1016/j.ecolind.2016.01.014
  34. Spiteri, C., van Maren, B., van Kessel, T., and Dijkstra, J. (2011). Effect chain modelling to support Ems-Dollard management, Journal of Coastal Research, 61, 226-233. https://doi.org/10.2112/SI61-001.19
  35. U. S. Fish and Wildlife Service (USFWS). (1980). Habitat evaluation procedure (HEP) ESM 102, Washington, D.C. USA.
  36. Van Breukelen, S. (1992). Habitat Geschiktheid Index Model, De Karper Cyprinus carpio L., Organisatie ter Verbetering van de Binnevisserij. July 1992. [Dutch Literature]
  37. van Oorchot, M., Kleinhans, M., Buijse, T., Geerling, G., and Middelkoop, H. (2018). Combined effects of climate change and dam construnction on riverline ecosystems, Ecological Engineering, 329-344.
  38. van Wolfshaar, K. E., Ruizeveld de Winter, A. C., Straatsma, M. W., van den Brink, N. G. M., and de Leeuw, J. J. (2010). Estimating spawning habitat availability in flooded areas of the river wall, the Netherlands, River Reaserach and Applications, 26, 487-489. https://doi.org/10.1002/rra.1306
  39. Wang, H., Wang, H., Hao, Z., Wang, X., Liu, M., and Wang, Y. (2018). Multi-objective assessment of the ecological flow requirement in the upper Yangtze national nature reserve in China using PHABSIM, Water, 10, 324. https://doi.org/10.3390/w10030324
  40. Wasson, J., Tusseau-vuillemin, M., Andreassian, V., Perrin, C., Faure, J., Barreteau, O., Bousquet, M., and Chastan, B. (2003). What kind of water models are needed for the implementation of the European water framework directive? Examples from France, International Journal of River Basin Management, 1(2), 125-135. https://doi.org/10.1080/15715124.2003.9635199
  41. Zweig, M. H. and Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine, Clinical Chemistry, 39(4), 561-577. https://doi.org/10.1093/clinchem/39.4.561