• 제목/요약/키워드: River water heat source

검색결과 39건 처리시간 0.026초

하천수율원이용 2단압축 열펌프시스템 냉방성능평가 (Cooling Performance Test of 2-stage Heat Pump System Using River Water as a Heat Source)

  • 김종률;이영수;장기창;라호상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2129-2134
    • /
    • 2004
  • The present study has been conducted to develop a heat pump system using river water of temperature energy which not only belongs to unutilized energy but is a kind of good heat source due to maintain its temperature in a certain degree regardless of seasonal variation. The system did not meet the proposed performance after setup. In this paper, the system performance affected by refrigerant Oil, by pressure drop, or by other factors has been discussed. The followings were obtained : (1) Refrigerant Oil mixture rate was 2.5 in weight percentage, (2) Pressure drop through evaporator was 29.1kPa($3.1^{\circ}C$ in saturated tempearture) (3) Pressure drop from the end of evaporator to compressor inlet was 39.8kPa($4.0^{\circ}C$ in saturated tempearture). (4) The system performance can to be improved by modifying a part of pipe line to compressor, and reducing pressure drop through heat exchangers.

  • PDF

하천-충적대수층계의 강변여과수를 열원으로 이용하는 지하수 열펌프 시스템의 계절별 입구온도와 효율성 평가 (Seasonal Variations of EWT and COP of GWHP System Using the Bank Infilterated Water from Stream-Alluvial Aquifer System)

  • 한찬;전재수;윤운상;한혁상;한정상
    • 한국지열·수열에너지학회논문집
    • /
    • 제3권2호
    • /
    • pp.39-51
    • /
    • 2007
  • Unconsolidated and permeable alluvial deposit composed of sand and gravel is distributed along the fluvial plain at the Iryong study area. Previous studies on the area show that a single alluvial well can produce at least 1,650m3d-1 of bank infilterated shallow groundwater(BIGW) from the deposit. This study is aimed to evaluate and simulate the influence that seasonal variation of water levels and temperatures of the river have an effect on those of BIGW under the pumping condition and also to compare seasonal variation of COPs when indirectly pumped BIGW or directly pumped surface water are used for a water to water heat pump system as an heat source and sink using 3 D flow and heat transport model of Feflow. The result shows that the magnitude influenced to water level of BIGW by fluctuation of river water level in summer and winter is about 48% and 75% of Nakdong river water level separately. Seasonal change of river water temperature is about $23.7^{\circ}C$, on other hand that of BIGW is only $3.8^{\circ}C$. The seasonal temperatures of BIGW are ranged from minimum $14.5^{\circ}C$ in cold winter(January) and maximum $18.3^{\circ}C$ in hot summer(July). It stands for that BIGW is a good source of heat energy for heating and cooling system owing to maintaining quite similar temperature($16^{\circ}C$) of background shallow groundwater. Average COPh in winter time and COPc in summer time of BIGW and surface water are estimated about 3.95, 3.5, and about 6.16 and 4.81 respectively. It clearly indicates that coefficient of performance of heat pump system using BIGW are higher than 12.9% in winter time and 28.1% in summer time in comparision with those of surface water.

  • PDF

대규모 시설에서 이용가능한 미활용 에너지의 부존량과 그 이용 가능성에 관한 조사연구-하천수.해수.하수처리수를 중심으로 (An Estimation of Quantity of Unused Energy of River Water, Seawater and Treated Sewage as Heat Source and Its Availability in Large Facilities)

  • 허재영
    • 안보군사학연구
    • /
    • 통권1호
    • /
    • pp.423-446
    • /
    • 2003
  • While the demand for energy has shown a sharp increase recently, the supply seems to be limited by the fact that the conventional fossil fuel energy or nuclear energy has its own environmental problems such as, for example, global warming or nuclear waste disposal. To overcome such limited supply of energy, the utilization of natural thermal energy such as river water and seawater as well as treated sewage can be a substantial supplement. The potential use of the unused energy has become more and more feasible these days as the heat pump technology has been advanced. In the present study, the unused energy resources are estimated on regional and monthly basis for each resource by the method proposed here in order to establish the fundamental data for its utilization. The potential use of the unused energy is a1so discussed.

  • PDF

지표면의 비균질성이 지표층의 난류수송에 미치는 영향 (Influence of Surface Heterogeneity on Turbulent Transfer in the Surface Layer)

  • 홍선옥;이영희;임윤진
    • 대기
    • /
    • 제24권3호
    • /
    • pp.317-329
    • /
    • 2014
  • Eddy covariance data have been analyzed to investigate the influence of surface heterogeneity on turbulent transfer over farmland and industrial sites near Nakdong river, Korea, where both large and small scale heterogeneities co-exist. For this purpose, basic turbulent statistics, quadrant analysis and multi-resolution decomposition have been analyzed during the daytime. Basic turbulent statistics were compared with typical turbulent statistics in the surface layer. Such comparisons were in close agreement for momentum and heat at both sites but not for water vapor at industrial site. The correlation coefficient between water vapor and vertical velocity ($r_{wq}$) is relatively low and skewness of water vapor ($sk_q$) is very low at industrial site, possibly due to limited water source. For heat at both sites and water vapor at farmland, the quadrant analysis show similar behavior to that over homogeneous site but for water vapor at industrial site, the presence of river and limited water source at industrial site seems to influence on water vapor transfer by coherent eddy motion by increasing sweep contribution and decreasing ejection contribution. Multi-resolution decomposition analysis shows that large scale heterogeneity leads to low $r_{Tq}$ at large averaging time regardless of season at both sites and there are seasonal changes of $r_{Tq}$ in mid-averaging times at industrial site, possibly due to seasonal change of trees and grasses near the site.

Performance evaluation of sea water heat exchanger installed in the submerged bottom-structure of floating architecture

  • Sim, Young-Hoon;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1062-1067
    • /
    • 2015
  • Floating architecture is a type of building that is geographically located on a sea or a river. It floats under the influence of buoyancy, and does not have an engine for moving it. Korea is a peninsula surrounded by sea except on the north side, so floating architectures have been mainly focused on two points: solving the issue of small territory and providing various leisure & cultural spaces. Floating architectures are expected to save energy effectively, if they use sea water heat, which is known to be clean energy with infinite reserves. To use sea water heat as the heat source and/or heat sink, this study proposes a model in which a sea water heat exchanger is embedded in the concrete structure in the lower part of the floating architecture that is submerged under the sea. Based on the results of performance evaluations of the sea water heat exchanger using CFD (computational fluid dynamics) analysis and mock-up experiments under various conditions, it is found out that the temperature difference between the inlet and outlet of the heat exchanger is in the range of $3.06{\sim}9.57^{\circ}C$, and that the quantity of heat transfer measured is in the range of 3,812~7,180 W. The CFD evaluation results shows a difference of 5% with respect to the results of mock-up experiment.

Preference for Heated Substrate in Captive River Cooters (Pseudemys concinna): A Potential Use for the Control of Invasive Populations

  • Kang, Hakyung;Borzee, Amael;Chuang, Ming-Feng;Jang, Yikweon
    • Animal Systematics, Evolution and Diversity
    • /
    • 제37권1호
    • /
    • pp.9-14
    • /
    • 2021
  • Invasive species threaten global biodiversity as well as human livelihood and much of the global lands are vulnerable to these threats. Numerous freshwater turtles from the northern hemisphere have been introduced in East Asian countries, including the Republic of Korea. Knowing turtle's behavioral ecology is valuable to manage introduced populations and a distinctive behavior is basking for behavioral thermoregulation. To understand the possibility of using basking to enhance trapping, we tested thermotaxis in the river cooter (Pseudemys concinna). Turtles were placed in an aquarium containing heated and non-heated mats under controlled water and air temperature, air humidity and light. We found that P. concinna stayed significantly longer on heated mats than on unheated control mats in 11 out of 18 trials, demonstrating that heat source is a potential attractant for P. concinna. We recommend the use of heat source to bait traps used for population control of invasive freshwater turtles.

기온 변화에 따른 팔당호 수온 영향 및 이력현상 (Effect of Air Temperature Changes on Water Temperature and Hysteresis Phenomenon in Lake Paldang)

  • 유순주;임종권;이보미
    • 환경영향평가
    • /
    • 제29권5호
    • /
    • pp.323-337
    • /
    • 2020
  • 국내 최대 상수원인 팔당호를 대상으로 기온과 수온의 변화를 살펴보고 장기간 기온과 수온의 연속 자료를 활용하여 이력 현상을 살펴보았다. 계절 Mann-Kendall을 적용한 팔당호 인근 양평의 기온 변화 추세는 지난 47년간(1973~2019) 증가(0.048 ℃/yr)에 비하여 최근 27년간(1993~2019) 기온의 증가(0.060 ℃/yr)가 컸다. 팔당호와 유입 하천에서 수온은 기온과의 상관성이 높으나(R > 0.9, p < 0.005) 호소인 팔당댐앞 지점에서의 수온은 하천 수온 상승에 비하여 느리고 기온 하강기에 들어서 수온이 서서히 감소하였고 수심 평균 수온도 상승기와 하강기 모두 호소 표층보다 변화가 더디게 나타났다. 이는 호소가 하천보다 수체 규모 면에서 크고 체류시간이 길기 때문에 열에너지를 흡수하고 감소하는데 시간이 걸리는 수온의 이력 현상이 크게 작용하는 것으로 판단된다.